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Abstract

How does employer learning affect the allocation of talent in the market

for research scientists? I study this question using the job histories of 40,000

Ph.D.’s in computer science (CS) matched to their scientific publications and

patent applications. Authorship of a CS conference proceeding doubles the

probability that a researcher moves to one of the top tech firms in the following

year, controlling for her origin firm and experience, implying a strong role

for public learning in the matching process between more productive workers

and more productive firms. Many higher-quality papers are accompanied

by a related patent application, but the existence of an application is private

information for 18 months. Authors of such papers are somewhat less likely to

move up the firm ladder in the following year, but are more likely to end up at a

top firm within three years, as predicted by a model of employer wage setting

with asymmetric information. I estimate a structural version of the model

and find that in the absence of employer learning from scientific publications,

the innovation output of early-career computer scientists would drop by 16%.

Disclosing patent applications one year faster would increase innovation by

1%, driven by a faster rate of assortative matching.
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1 Introduction

Identifying talent is critical to the efficient allocation of labor in an economy.

A large body of research suggests that workers’ abilities are only partially revealed

prior to labor market entry, and that substantial learning by employers occurs over

the first decade or so of work (e.g., Altonji and Pierret 2001; Farber and Gibbons

1996; Pallais 2014). Existing tests of employer learning, however, rely on only

indirect correlates of worker abilities (Kahn 2013; Lange 2007; Schönberg 2007). In

most settings researchers cannot see the public signals about worker ability that

are assumed to be available to employers in standard learning models, let alone the

private signals that only their current employer can see in models of asymmetric

learning (Acemoglu and Pischke 1998; Li 2013). This missing data challenge also

makes it difficult to quantify the impact of employer learning on the efficiency of

talent allocation, which is a typical outcome of interest in theoretical frameworks

(e.g., Terviö 2009; Waldman 1984)

In this paper I address this missing data challenge directly by building a

new dataset that combines the employment histories of newly-minted Ph.D.’s in

computer science (CS) with information on their publications in major conference

proceedings and their patents. I use the data to show descriptively how the pub-

lication of a new paper or a patent application affects inter-firm mobility. I then

estimate a structural model of imperfect competition for talent among employers,

and use the model to assess the impacts of both public and private learning on the

efficiency of talent allocation.

Every year about 4,000 Ph.D.’s graduate in CS or closely related fields in the

United States.1 The majority of new CS Ph.D.’s enter the private sector, but they

often continue to publish at academic conferences, yielding public information

1The number is based on the Survey of Earned Doctorates by the National Science Foundation.

Throughout this paper I refer to computer scientists as workers who have a Ph.D. in Computer

Science or Electrical Engineering (including EECS) in the United States.
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on their research ability.2 About 25% of papers from industry researchers are

accompanied by a patent application filed by their employers: these papers are

more highly cited in later years, suggesting that they contain more valuable ideas.

The existence of an accompanying patent, however, is private information that is

only revealed with an 18-month lag.3 Patterns of mobility in the period immediately

after the patent application (when the fact of filing is private) and in the following

few years (when the patent application becomes public information) therefore

provide novel evidence of asymmetric learning.

My empirical analysis is based on a dynamic model of employer learning

and sorting. I consider the wage setting and task allocation decisions made by

firms in an imperfectly competitive labor market. Firms that vary in productivity

allocate workers to innovation task and update their beliefs about the research

ability of workers based on their innovation outputs. When part of the innovation

record is publicly visible, firms face a trade-off between learning and retention:

allocating a worker to more innovation tasks helps an incumbent employer identify

high-ability workers faster and improve internal productive efficiency, but it also

increases the risk that high-ability workers will be recognized and poached by

outside employers. The Markov Perfect Bayesian Nash Equilibrium of this model

comprises profit-maximizing wages set by firms conditional on the information

they have, taking as given the wages set by their competitors. To the best of my

knowledge, this is the first dynamic model that introduces information frictions to

a monopsony framework as in Card et al. (2018).

This model generates two key testable predictions on how information rev-

elation changes inter-firm mobility: (1) Workers with newly revealed innovation

2The share of new CS Ph.D.s entering the industry as opposed to academia has been increasing

over the past 20 years and exceeding 50% since 2017 (Appendix Figure B3).

3The American Inventors Protection Act (AIPA) of 1999 amends title 35, United States Code

(U.S.C.) 122 to provide that patent applications shall be published promptly after the expiration of

18 months from the earliest filing date. The United States Patent and Trademark Office (USPTO)

has implemented this rule since November 29, 2000.
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are more likely to move between firms and move to more productive firms than

similar workers without such signals. (2) Job mobility is suppressed for workers

with positive signals that are observed by the incumbent employer but unknown

to potential employers outside. I adopt these predictions as tests for the presence

of symmetric (public) and asymmetric employer learning.

The labor market for computer scientists provides rich information on worker

productivity that allows me to directly test for employer learning. I match the

public LinkedIn profiles of 40,000 computer scientists with their on-the-job research

outputs including CS conference proceedings and patent applications. Relative

to economics, initial information from the PhD education is less predictive of

a computer scientist’s future research success.4 The stronger role of post-PhD

employer learning than of initial information in the allocation of talent is also

confirmed by a Shapley-value-based decomposition in my structural analysis.

I test for public employer learning by comparing the job mobility of workers

who produce a paper with similar coworkers without a paper. Authors of CS papers

often get a second chance to move up the job ladder. I measure upward mobility

by job movements into top “big tech” firms {Google, Microsoft, IBM, Facebook,

Amazon, Apple} from other nontop firms in the industry.5 Figure 1a presents a

simple comparison between newly minted CS researchers who start off at a nontop

firm and either publish or do not publish a paper at a CS conference in the first

two years post Ph.D. The raw data clearly shows a divergence in upward mobility

rates. Conditional on firm-year fixed effects and a rich set of controls for worker

and position characteristics, I find that employees at nontop firms are more than

twice as likely to move to a top firm the next year, suggesting that the revelation of a

publication boosts positive assortative matching between higher-ability researchers

4I run regressions of post-PhD research accomplishments on PhD school and cohort fixed effects.

Using the data on economists in Sarsons (2017), I find a much higher 𝑅2
among economists than

among computer scientists (Appendix Table B1).

5The top firms pay higher wages and on average produce more papers. About a quarter of CS

papers from the industry have an author from the 6 top firms.
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and more productive firms.

Figure 1: Upward Mobility from Nontop to Top Firms
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(b) Paper+Patent vs. Paper Only

1 2 3 4 5 6 7 8 9 10
Experience: Yrs since Ph.D.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Sh
ar

e 
of

 W
or

ke
rs

 E
m

pl
oy

ed
 b

y 
To

p 
Fir

m
s

No Paper
Paper only
Paper + Matched Patent

Notes: This figure shows the share of computer scientists who work at a top firm in each year post

PhD, separately by a person’s research output while working at a nontop firm initially.

To test for asymmetric learning, I exploit patent laws that, by default, delay the

disclosure of a patent application by 18 months after its initial filing.6 This feature

suggests whether a paper has a matched patent application is revealed later than

the paper itself.7 Workers themselves rarely advertise pending patent applications

that have not been published by the patents office.8

Figure 1b based on the raw data shows another divergence in upward mobility

between workers who produce a paper only or a paper with a matched patent.

Comparing similar coworkers at nontop firms, I find that authors of papers with

a matched patent are less likely to move than other authors when only the papers

are known. But in three years when most patent applications become public

information, they are 14% more likely to move to a new firm, and 26% more likely

6See Title 35 U.S.C. 122 (AIPA 1999) in Appendix Table B4. Figure B1 shows that about 80% of

patent applications comply with the 18-month rule. The 20% non-compliance is driven by firms

that file a non-publication request at the time of initial filing (see exception B of 122(b) in Table B4).

7See Table 2 for examples. I matched patent applications to papers according to the team of

authors, employment information, and patentability conditions (Title 35 U.S.C. 102).

8See Appendix Figure B7. Most workers will sign a non-disclosure agreement, which defines

any invention on the job as the employer’s proprietary information. Patent applications that have

not been published may still be viewed as trade secrets (e.g., Hyde Corporation v. Huffines 1958). It is

therefore risky for workers to publicly signal patent applications that are still private information

of the incumbent employer.

4



to move to a top firm than their coworkers. This finding is consistent with the

model prediction on asymmetric learning: incumbent firms with knowledge of the

matched patent would post a higher wage for such workers and therefore retain

them longer, but once the matched patent is revealed, public employer learning

pulls high-ability workers out of less productive firms.

How much does employer learning matter for the efficient allocation of labor?

To provide a quantitative assessment, I present counterfactual simulations from a

fully specified model with and without employer learning from workers’ on-the-

job research. I estimate the model using a nested fixed-point algorithm as in Rust

(1987) to maximize the joint likelihood of job movements and research production

by early-career computer scientists. Simulating the model with no learning from

papers or patent applications, I estimate that the overall publication rate of CS

researchers in the first five years of their career would be 16% lower.

Removing the delayed disclosure of patent applications is estimated to im-

prove publication rate by 1%, which is fully driven by faster positive assortative

matching. Workers who produce a paper with a matched patent would experi-

ence a 2 pp increase in upward mobility without further ado, and generate a 5-6%

increase in innovation production at top firms. However, in the absence of informa-

tion rent, incumbent firms would assign fewer innovation tasks ex ante, providing

a counterforce on the discovery of talent in this counterfactual scenario. This result

is similar to the prediction that firms provide less general training when they face

higher turnovers (e.g., Acemoglu and Pischke 1998; Stevens 1994).

This paper makes two main contributions. First, I contribute to the employer

learning literature by providing direct evidence of the impacts of public learning

following publications by CS researchers. Early works by Altonji and Pierret (2001)

and Farber and Gibbons (1996) attributed the increasing correlation between wages

and AFQT scores (observed by researchers but not firms) over time to employer

learning. The underlying model of these studies posits that employers update
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their belief when new signals arrive, but these signals are rarely observable except

from within-firm personnel records (Kahn and Lange 2014). This paper offers

more direct tests for public learning by estimating changes in job mobility around

a CS publication. Very few articles in this literature test for asymmetric employer

learning (Kahn 2013; Schönberg 2007). This paper exploits the delayed disclosure

of patent applications to show that workers who produce higher-quality research

experience a delayed increase in mobility. Consistent with Hager et al. (2023), I

find that high-ability workers hidden in less productive firms would benefit from

a reduction of asymmetric information.

Second, this paper attempts to bring together the theory of employer learning

and models of imperfect labor market competition. The classic learning framework

often begins with homogeneous players (employers) under perfect competition,

which are reasonable simplifying assumptions to discuss complicated problems

such as adverse selection (Boozer 1994; Hendricks and Porter 1988; Li 2013). Re-

laxing the homogeneity and perfect competition assumptions generates a richer

set of predictions on job mobility upon information revelation, which I validate in

the CS labor market. Doing so does not change the important insight that movers

are adversely selected under asymmetric information (Gibbons and Katz 1991;

Greenwald 1986). Furthermore, introducing information frictions into a monop-

sony framework as in Card et al. (2018) also provides a tractable model that can be

estimated to assess the role of employer learning in the efficient allocation of labor.

2 A Dynamic Model of Employer Learning

I develop a discrete-time finite horizon dynamic model of employer learn-

ing by firms in an imperfectly competitive labor market. I first lay out the key

assumptions in the conceptual framework, and then fully specify the model and

characterize its equilibrium.
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2.1 Conceptual Framework

The model concerns the allocation of labor between and within firms given

noisy information about worker research ability, denoted by 𝛼𝑖 . When new Ph.D.s

enter the labor market (𝑡 = 1), there is public information 𝐼𝑖1 about person 𝑖 that is

predictive of whether her 𝛼𝑖 is high or low, such as education background or earlier

publications. Post-Ph.D. employer learning, in contrast, is based on the innovation

outputs produced by workers on their jobs and is asymmetric between firms when

the incumbent employer has additional information earlier than the outside labor

market.

Specifically, the research papers produced by workers become public infor-

mation with little or no lag. But whether a paper is accompanied by a patent

application, an indicator for higher-quality research, is private information with

the employer of the author(s) for one period. I refer to research papers and their

accompanying patent applications as publishable innovation. The likelihood of

publishable innovation is determined by a worker’s ability and the share of time

she can spend on publishable innovation tasks, denoted by 𝜏, as opposed to routine

tasks. The task allocation 𝜏 is endogenously chosen by her employer.

Firms (𝑗) are heterogeneous in a multidimensional productivity. Some firms

are better at attracting clients through publishable innovation or developing them

to products, whereas other firms may benefit little from publications and rely

more on private research that yields traditional patents unrelated to papers. The

production of publishable innovation is supermodular in equilibrium: firms that

are more productive in publicly accessible research will set a higher 𝜏, which thus

increases the difference in expected output between 𝐻 and 𝐿 workers.

Conditional on information about workers, firms make simultaneous offers of

a wage {𝑤𝑖𝑡 𝑗} and a time allocation to publishable innovation tasks {𝜏𝑖𝑡 𝑗} that max-

imize expected flow profit plus a discounted continuation value from the worker.

Importantly, they face a dynamic tradeoff: setting a higher 𝜏 can increase a firm’s
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revenue from publishable innovation today, but any successful paper becomes pub-

lic information and increases the risk of losing the author to other firms in the next

period. Such turnover risk is higher at less productive firms, which post lower

wages on average in equilibrium. The downward pressure of turnover risk on

publishable tasks is the same as how monopsony power affects employer-provided

general skill training (Acemoglu and Pischke 1998; Manning 2003; Stevens 1994).

To focus on the dynamic decisions by firms, I keep workers’ problem sim-

ple and static. At 𝑡 = 1, workers observe the wage postings and draw nested

logit preferences over employers, 𝜖𝑖1𝑗 , which can be correlated within each nest

𝐺(𝑗) ∈{Tenure-Track, Postdoc, Top Firms, Nontop Firms} but independent between

𝐺’s. At 𝑡 > 1, I follow Card et al. (2018) to allow workers to re-enter the labor

market and redraw 𝜖𝑖𝑡 𝑗 with probability 𝜆(𝐼𝑖𝑡), which is a function of the public

information 𝐼𝑖𝑡 known to all employers at the beginning of 𝑡. Other workers are

assumed to stay with previous employers. When 𝜆 < 1, firms have additional

monopsony power over their incumbent employees and can set lower wages than

for equally productive new workers.

I show the existence and uniqueness of a Markov Perfect Bayesian Nash Equi-

librium in the dynamic wage-posting game between firms. Both the wage 𝑤 and

innovation task 𝜏 will increase when a worker publishes a paper or when a patent

application from the earlier period becomes public knowledge. The wage in-

crease upon information revelation in equilibrium is higher at more productive

firms, pushing high-ability workers up along the firm job ladder. The simplifying

assumption that workers naively solve a static job choice problem shuts down self-

selection into more research-intensive jobs (Stern 2004), but they do not change the

key model predictions (Section 2.3) that there is increased mobility from less pro-

ductive firms when the labor market receives positive information about workers.
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2.2 Model Specification and Equilibrium

I clarify the notations and the information structure, state the repeated static

problem of workers, the dynamic problem of firms, and solve for the equilibrium

in this finite 𝑇-period game via backward induction.

2.2.1 Notations and Information Structure

The payoff-relevant state space for firms is defined by the information about

workers. Denote by 𝐼𝑖𝑡 the public information about the research ability of worker

𝑖 at the beginning of 𝑡, and by �̃�𝑖𝑡 the private information known only to her

incumbent employer. At 𝑡 = 1, 𝐼𝑖1 includes her education and publication records

before Ph.D., and �̃�𝑖1 = ∅. Once a worker has entered the labor market, information

evolves according to her on-the-job output while being employed by firm 𝑗(𝑖 , 𝑡).
The output of worker 𝑖 in period 𝑡 is summarized by a vector of indicators,

(𝐷𝑖𝑡(11), 𝐷𝑖𝑡(10), 𝐷𝑖𝑡(00)), the first two of which represent publishable innovation:

𝐷𝑖𝑡(11) = 1 if 𝑖 produces any paper with an accompanying patent, whereas𝐷𝑖𝑡(10) =
1 if 𝑖 produces papers but none of which are applied as patents. To take into

account some firms focus on private research rather than publishable innovation,

I introduce 𝐷𝑖𝑡(01), which indicates if 𝑖 has any patent application unrelated to

papers. Conditional on allocation to publishable innovation tasks 𝜏, high-ability

(𝛼𝑖 = 𝐻) workers are more likely to produce papers than the low-ability (𝑝𝐻 > 𝑝𝐿),

and are more likely to produce papers with an accompanied patent �̃�𝐻 > �̃�𝐿 (Table

1).9 to be independent from 𝜏. 𝐻 workers are more likely to patent (𝑞𝐻 > 𝑞𝐿), but

there are no increasing differences between firms.

9When a worker has any paper, 𝐷𝑖𝑡(11) + 𝐷𝑖𝑡(10) = 1. I require 𝐷𝑖𝑡(11) = 1 and 𝐷𝑖𝑡(10) = 0

when any of her papers has a matched patent application. The probability that a worker of

ability 𝛼 has a matched patent application conditional on having any paper is denoted by �̃�𝛼 =

𝐸[𝐷𝑖𝑡(11)|𝐷𝑖𝑡(11) + 𝐷𝑖𝑡(10) = 1]. Under this assumption, there are 6 possible innovation outputs:

(𝐷𝑖𝑡(11), 𝐷𝑖𝑡(10), 𝐷𝑖𝑡(01)) ∈ {(1, 0, 1), (1, 0, 0), (0, 1, 1), (0, 1, 0), (0, 0, 1), (0, 0, 0)} (2.1)
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Table 1: Likelihood of Innovation Output

Innovation Likelihood | 𝛼 and innovation task 𝜏
𝐷𝑖𝑡(11): Any Paper + Matched Patent 𝐸[𝐷𝑖𝑡(11)|𝛼, 𝜏] = 𝑝𝛼 × �̃�𝛼 × 𝜏

𝐷𝑖𝑡(10): Any Paper but no Matched Patent 𝐸[𝐷𝑖𝑡(10)|𝛼, 𝜏] = 𝑝𝛼 × (1 − �̃�𝛼) × 𝜏

𝐷𝑖𝑡(01): Any Patent unrel. to Paper 𝐸[𝐷𝑖𝑡(01)|𝛼, 𝜏] = 𝑞𝛼

Incumbent employer 𝑗(𝑖 , 𝑡) has full access to (𝐷𝑖𝑡(11), 𝐷𝑖𝑡(10), 𝐷𝑖𝑡(01)). How-

ever, due to the delayed disclosure of patent applications, the outside labor market

initially only observes if there is a research paper, denoted by 𝐷𝑖𝑡(11) +𝐷𝑖𝑡(10), but

cannot tell at 𝑡 if any of the worker’s paper is accompanied by a patent application

(𝐷𝑖𝑡(11) vs. 𝐷𝑖𝑡(10)), or if she has any patent unrelated to papers, 𝐷𝑖𝑡(01). The

information evolution at 𝑡 ≥ 1 can be summarized as follows, in which the private

�̃�𝑖𝑡 becomes public with a one period delay10

public 𝐼𝑖(𝑡+1) = 𝐼𝑖𝑡 ∪ �̃�𝑖𝑡︸  ︷︷  ︸
info before 𝑡

∪ { 𝑗(𝑖 , 𝑡), 𝐷𝑖𝑡(11) + 𝐷𝑖𝑡(10)︸               ︷︷               ︸
any paper at 𝑡

} (2.3)

private �̃�𝑖(𝑡+1) = {(𝐷𝑖𝑡(11), 𝐷𝑖𝑡(10), 𝐷𝑖𝑡(01))}

Firms are endowed with a baseline productivity �̄� 𝑗 ∈ R+, and proportionate

returns to each type of innovation,

[
𝜙 𝑗(𝑘)

]
𝑘∈{11,10,01} with 𝜙 𝑗(𝑘) ∈ R+, all of which

are publicly known. Firms that benefit more from publishable innovation have a

higher 𝜙 𝑗(10) or 𝜙 𝑗(11) , while firms that rely more on traditional patenting like

Apple have a higher 𝜙 𝑗(01). Conditional on worker ability 𝛼 and task allocation 𝜏,

10The conditional probability distribution of future states depends only on the current state,

satisfying the Markov property:

𝑃𝑟(𝐼𝑖(𝑡+1) , �̃�𝑖(𝑡+1) |𝐼𝑖𝑡 , �̃�𝑖𝑡) =
∑

𝛼∈{𝐻,𝐿}
𝑃𝑟(𝛼 |𝐼𝑖𝑡 , �̃�𝑖𝑡)︸        ︷︷        ︸

current belief

× 𝑃𝑟(𝐷𝑖𝑡(11), 𝐷𝑖𝑡(10), 𝐷𝑖𝑡(01)| 𝑗(𝑖 , 𝑡), 𝛼)︸                                           ︷︷                                           ︸
innovation output at 𝑡

(2.2)
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the expected value from the production at firm 𝑗 is:11

𝑌𝑗(𝛼, 𝜏) = �̄� 𝑗

©«
1 − 𝜏︸︷︷︸
routine

+
∑

𝑘∈{11,10,01}
𝜙 𝑗(𝑘) × 𝐸[𝐷𝑖𝑡(𝑘)|𝛼, 𝜏]︸                                    ︷︷                                    ︸

returns to innovation

− 𝜁(𝜏)︸︷︷︸
cost

ª®®®®®®®¬
(2.4)

The model timeline is detailed in Appendix A0. At least three discrete periods

are needed to capture the full information revelation process.

2.2.2 Workers’ Problem

Workers who are on the labor market at 𝑡 draw idiosyncratic preferences from

a generalized extreme value distribution:

𝐹({𝜖𝑖𝑡 𝑗}) = 𝑒𝑥𝑝
©«−

∑
𝐺∈𝐶

©«
∑
𝑗∈𝐺

𝑒𝑥𝑝(−𝜌−1

𝐺 𝜖𝑖𝑡 𝑗)ª®¬
𝜌𝐺ª®¬ (2.5)

where 𝐶 denotes the set of potential employers a worker can choose from in a

given period.12 The preferences are independent between nests and over time,

but can be correlated within a nest 𝐺 if 𝜌𝐺 < 1. Among the four nests 𝐺(𝑗) ∈
{Tenure-Track, Postdoc, Top Firms, Non-Top Firms}in the CS labor market, the first

two represent academia while the last two represent industry.

All workers are on the labor market at 𝑡 = 1 (the first year post PhD). At 𝑡 > 1

any worker 𝑖 from nest 𝐺 with public information 𝐼𝑖𝑡 can get on the market again

and search for new jobs with probability:

𝜆(𝐼𝑖𝑡) = 𝜆0,𝐺 × (1 + 𝜆1,𝐺 × 𝑃𝑟(𝐻 | 𝐼𝑖𝑡)) (2.6)

11There is a convex cost of allocating workers to publishable innovation tasks, which may include

investment in computing power that often grows in a convex way as employees spend more time

on innovation. It may also absorb the management costs of moving workers away from routine

activities within a firm. For example, a firm may have to establish an in-house research lab, hire new

managers, and establish a new performance evaluation system for workers who are increasingly

involved in research.

12Workers from industry may not be always be able to move to academia. In that case, 𝐶 does not

include tenure-track or postdoc employers. See footnote 54.
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which takes a positive value in (0, 1], and can vary between original nest 𝐺’s and

depend on public belief 𝑃𝑟(𝛼𝑖 = 𝐻 | 𝐼𝑖𝑡) about the worker.13 14 Other workers who

are not on the market stay put and hold fixed the preferences they have drawn

before.

Workers who are on the labor market observe the wages posted simultane-

ously by potential employers {𝑤𝑖𝑡 𝑗} and choose her employer as follows:

𝑗(𝑖 , 𝑡) = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑗∈𝐶 𝑢𝑖𝑡 𝑗 = 𝑏 × 𝑙𝑛(𝑤𝑖 𝑡 𝑗) + 𝜌𝐺(𝑗) × 𝜖𝑖 𝑡 𝑗 (2.7)

Assume 𝑏 ∈ (0,∞) and ∀𝐺 : 𝜌𝐺 ∈ (0, 1] so that the labor market is imperfectly

competitive. Their choice probabilities are represented by the well-known nested

logit model (McFadden 1973; Imbens and Wooldridge 2007):

𝑠 𝑗 | 𝐶 = 𝑠 𝑗 | 𝐺(𝑗)︸︷︷︸
choose 𝑗∈𝐺(𝑗)

× 𝑠𝐺(𝑗)| 𝐶︸ ︷︷ ︸
choose nest 𝐺(𝑗)∈𝐶

(2.8)

each of which is a function of wages within a choice set 𝐶. Conditional on public

information 𝐼𝑖𝑡 and posted wages {𝑤𝑖𝑡 𝑗}, the worker’s expected labor supply to her

incumbent employer vs. to an outside employer can be written as:

Incumbent 𝑗 = 𝑗(𝑖 , 𝑡 − 1) : 𝑠
(1)
𝑗
({𝑤𝑖𝑡 𝑗′}; 𝐼𝑖𝑡) = 1 − 𝜆(𝐼𝑖𝑡)︸    ︷︷    ︸

off market

+ 𝜆(𝐼𝑖𝑡) × 𝐸𝐶[𝑠 𝑗 |𝐶]︸              ︷︷              ︸
on market & choose j again

Outside 𝑗 ≠ 𝑗(𝑖 , 𝑡 − 1) : 𝑠
(0)
𝑗
({𝑤𝑖𝑡 𝑗′}; 𝐼𝑖𝑡) = 𝜆(𝐼𝑖𝑡) × 𝐸𝐶

[
𝑠 𝑗 |𝐶

]
(2.9)

The elasticity of labor supply to a firm is lower among incumbent employees when

𝜆 < 1 (see 𝜉(1)
𝑖𝑡 𝑗

in 7.5). The labor market frictions from 𝜆’s provide firms additional

monopsony power over incumbent employees relative to new workers.

13For example, a worker with higher market belief but employed by a low-productivity firm may

search for new jobs more frequently, in which case 𝜆1,𝐺 > 0 for 𝐺 = Non-Top Firms. Workers

from top firms, in contrast, may be less likely to search for new jobs when they are perceived as

high-ability by the market.

14This formulation is equivalent to each worker drawing a random search cost 𝑧 𝑑∼ Φ, and only

search for new jobs if 𝑧 < 𝑧, where Φ(𝑧) = 𝜆. The 𝜆’s can also be interpreted as job arrival rates in

search models (e.g. Burdett and Mortensen 1998;Postel-Vinay and Robin 2002).
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2.2.3 Employers’ Problem

I focus on how employers set wages and allocate workers to innovation tasks

in an intermediary period 𝑡 ∈ {2, , ..., 𝑇 − 1}. The complete backward induction

is presented in the Appendix A1. Employer 𝑗’s value function is summed over its

incumbent employees and potential recruits from other firms (7.13).

For an incumbent employee, employer 𝑗 solves:

𝑣
(1)
𝑡 𝑗
(𝐼𝑖𝑡 , �̃�𝑖𝑡) = 𝑚𝑎𝑥𝒘 ,𝝉 𝑠

(1)
𝑗
(𝒘 , 𝑤−𝑗 ; 𝐼𝑖𝑡)︸             ︷︷             ︸

expected labor supply

×
(
𝐸𝛼 |𝐼𝑖𝑡∪�̃�𝑖𝑡 [𝑌𝑗(𝛼, 𝝉)] + 𝛽 𝐸[𝑣(1)(𝑡+1)𝑗(𝐼

′, �̃�′) | 𝝉] −𝒘
)

︸                                                        ︷︷                                                        ︸
flow profit & discounted continuation value, net wage

(2.10)

in which 𝑤−𝑗 are wages posted simultaneously by other firms, taking as given by

𝑗.15 The continuation value equals the value from an incumbent worker 𝑣
(1)
(𝑡+1)𝑗 ,

expected over the innovation outputs that will be produced in the current period

(see equation 7.15).16 It is discounted by a common factor 𝛽.

The optimal wage in this dynamic problem is front-loaded with the expected

continuation value from a job stayer, and is marked down by the inverse of labor

supply elasticity 𝜉(1)
𝑖𝑡 𝑗

(7.5):17

𝒘(1)
𝑖𝑡 𝑗

=

(
𝐸𝛼 |𝐼𝑖𝑡∪�̃�𝑖𝑡 [𝑌𝑗(𝛼, 𝝉)] + 𝛽 𝐸[𝑣(1)(𝑡+1)𝑗(𝐼

′, �̃�′) | 𝝉]
)
× 𝜉(1)

𝑖𝑡 𝑗
×

(
1 + 𝜉(1)

𝑖𝑡 𝑗

)−1︸                 ︷︷                 ︸
markdown

(2.11)

Task allocation is chosen to maximize the expected returns to publishable

innovation today and dynamic returns to the continuation value. Employers con-

sider how task allocations would affect public information about a worker and her

15In equilibrium (Definition 1, the wage 𝑤
(1)
𝑡 𝑗
(𝐼 , �̃�) for an incumbent employee is the best response

to 𝑤−𝑗 = 𝑤−𝑗(𝐼) conditional on public information 𝐼.
16Information evolves according to the worker’s innovation outputs at 𝑡 as in (2.3), with 𝐼′ =

𝐼𝑖𝑡 ∪ �̃�𝑖𝑡 ∪ {𝐷𝑖𝑡(11) + 𝐷𝑖𝑡(10)}, �̃�′ = {(𝐷𝑖𝑡(𝑘))𝑘=11,10,01
}.

17Incumbent employers can set a higher wage for workers who are privately known to be better

than what the market believes. The higher wage itself (posted simultaneously) would not disclose

private information directly.
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turnover tomorrow.

𝝉(1)
𝑖𝑡 𝑗

=𝑚𝑎𝑥{0, 𝑚𝑖𝑛{1, 𝝉∗𝑡 𝑗(𝐼𝑖𝑡 , �̃�𝑖𝑡)}} (2.12)

𝝉∗𝑡 𝑗(𝐼 , �̃�) B
1

𝜁
× 𝐸𝛼 |𝐼∪�̃�

−1 +
∑

𝑘∈{11,10,01}
𝜙 𝑗(𝑘) ×

𝜕𝐸[𝐷𝑖𝑡(𝑘)|𝛼, 𝜏]
𝜕𝜏

︸                                                         ︷︷                                                         ︸
return to innovation today

+
𝛽/�̄� 𝑗

𝜁
×

𝜕𝐸[𝑣(1)(𝑡+1)𝑗(𝐼
′, �̃�′)|𝜏]

𝜕𝜏︸                  ︷︷                  ︸
dynamic return

(2.13)

The derivative of continuation value over task allocation can be negative if

workers who publish a research paper are likely to be poached away (7.19). The

lower innovation assignment in that case is similar to the inefficiently lower training

provided by firms that face higher turnover (e.g. Acemoglu and Pischke 1998;

Stevens 1994).

For an outside worker 𝑖 from 𝑗(𝑖 , 𝑡 − 1) ≠ 𝑗, firm 𝑗 only has access to public

information 𝐼𝑖𝑡 . Its value function is expected over the unknown private signals �̃�𝑖𝑡 :

𝑣
(0)
𝑡 𝑗
(𝐼𝑖𝑡) = 𝑚𝑎𝑥𝒘 ,𝝉𝐸

˜𝑰 |𝐼𝑖𝑡 [ 𝑠
(0)
𝑗
(𝒘 , 𝑤−𝑗 ; 𝐼𝑖𝑡)︸             ︷︷             ︸

expected labor supply

×
(
𝐸𝛼 |𝐼𝑖𝑡∪˜𝑰 [𝑌𝑗(𝛼, 𝜏)|𝐼𝑖𝑡 ∪˜𝑰] + 𝛽 𝐸[𝑣(1)(𝑡+1)𝑗(𝐼

′, �̃�′) |𝝉] −𝒘
)

︸                                                                ︷︷                                                                ︸
MRPL & discounted continuation value, net wage

]

(2.14)

The wage for a new worker is a weighted average of monopsonistic wages (marked

down by elasticity 𝜉(0)
𝑖𝑡 𝑗

(7.10) conditional on information (𝐼𝑖𝑡 , �̃�):

𝒘(0)
𝑖𝑡 𝑗

=
©«1 + 𝐸

�̃� |𝐼𝑖𝑇


𝑠
(0)
𝑗

𝐸
�̃� |𝐼𝑖𝑇 [𝑠

(0)
𝑗
]
× 𝜉(0)

𝑖𝑇 𝑗
(̃𝐼)

ª®¬
−1

(2.15)

× 𝐸
�̃� |𝐼𝑖𝑇


𝑠
(0)
𝑗

𝐸
�̃� |𝐼𝑖𝑇 [𝑠

(0)
𝑗
]
× 𝜉(0)

𝑖𝑇 𝑗
(̃𝐼) ×

(
𝐸𝛼 |𝐼𝑖𝑡∪�̃� [𝑌𝑗(𝛼, 𝜏)] + 𝛽𝐸[𝑣(1)(𝑡+1)𝑗(𝐼

′, �̃�′)|𝜏]
)

in which the weight on each possible �̃� equals to the probability of �̃� being the

private information given public 𝐼𝑖𝑡 and the fact that the worker moves into 𝑗.18

18Since the wages enter the weights on the right-hand side, there are no analytic solutions, but I

will show the equilibrium wages can be solved via fixed-point iterations.
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When incumbent employers set higher wages for workers with more positive �̃�,

outside firms would lower the weights on such �̃�, which reflects the firms taking

into account the averse selection of movers under asymmetric information (Gibbons

and Katz 1991; Greenwald 1986).

The optimal allocation of new workers to innovation tasks is a weighted

average of 𝜏∗
𝑡 𝑗
(𝐼 , �̃�), with the same weight on each unknown �̃� as in (2.15):

𝝉(0)
𝑖𝑡 𝑗

=𝐸
�̃� |𝐼𝑖𝑡


𝑠
(0)
𝑗

𝐸
�̃� |𝐼𝑖𝑡 [𝑠

(0)
𝑗
]
× 𝜏∗𝑡 𝑗(𝐼𝑖𝑡 , �̃�)

 , 𝜏∗ defined in (2.12) (2.16)

2.2.4 Equilibrium

I define a Markov Perfect Bayesian Nash Equilibrium (MPBNE) in this finite-

horizon discrete-time game, in which firms post profit-maximizing wages condi-

tional on their current information about a worker, taking as given the wages posted

by other firms.

Definition 1 (Markov Perfect Bayesian Equilibrium Under Imperfect Competition)
In this 𝑇-period game between firms, the equilibrium in an imperfectly competitive labor
market ( 𝑏

𝜌𝐺
∈ (0,∞)) comprises:

• 𝑡 = 1: wages {𝑤1𝑗(𝐼)} at each firm, given every possible initial information 𝐼 about
a worker;

• 𝑡 = 2, ...𝑇: wages {𝑤(1)
𝑡 𝑗
(𝐼 , �̃�)} for incumbent employees at each firm given every

possible public information 𝐼 and private information �̃� at 𝑡, and wages {𝑤(0)
𝑡 𝑗
(𝐼)} for

workers from other firms given only public information;

that are set by each firm to maximize its own profits, taking as given the wages set by other
firms.19

Let 𝒘 denote the vector of wages in Definition 1 set by all firms for all possible

information sets, and 𝒔 = 𝑠(𝒘)denote the vector of expected labor supply evaluated

19Specifically, employers solve (7.20) at 𝑡 = 1, (2.10, 2.14) at 𝑡 = 2, ..., (𝑇 − 1), and (7.3, 7.8) at 𝑡 = 𝑇.

The expected labor supply is shaped by workers who choose their employers according to (2.7)

conditional on the wages posted by all potential employers.
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at equilibrium wages 𝒘.20 I can write the equilibrium as a system of equations:

𝒔 = 𝑠(𝑤(𝒔)) (2.17)

in which the wage function 𝑤 denotes the optimal wage as in (2.11, 2.15), and 𝑠

denotes the conditional choice probability in (2.9) given information (𝐼 , �̃�).
I show the existence and uniqueness (up to positive scaling of the wages)

of the MPBNE in Proposition 1 (Appendix A2). The proof closely follows the

discussion of discrete dynamic games with incomplete information in Rust (1994):

𝑠 ◦𝑤 is proved to be a contracting mapping, with a unique fixed point 𝒔 (2.17) that

represents the allocation of workers between firms in equilibrium.

The allocation to innovation tasks in equilibrium is very similar to firms’ pro-

vision of general skill training. Firms assign more ability-revealing tasks when in-

formation about workers is less public (Acemoglu and Pischke 1998), and when they

have more monopsony power (Manning 2003; Stevens 1994). Under perfect com-

petition (Proposition 2 in Appendix A2), workers who are not credit-constrained

bear all costs of innovation tasks and are paid their full marginal product of labor

as in Becker (1964).

2.3 Model Predictions

I discuss the implications of information revelation on inter-firm mobility. The

predictions are derived from the equilibrium under the following assumptions:

A1: The labor market is imperfectly competitive: 𝑏/𝜌𝐺 ∈ (0,∞).

A2: In the nest 𝐺 = nontop firms, the probability of re-entering the labor market

(2.6) satisfies: ∀ information 𝐼 , 𝐼′: 𝑃𝑟(𝐻 |𝐼) > 𝑃𝑟(𝐻 |𝐼′) → 𝜆(𝐼) > 𝜆(𝐼′).
20Given information (𝐼 , �̃�) in period 𝑡, the equilibrium wage at firm 𝑗:

𝒘𝑡 𝑗(𝐼 , �̃�) =


𝒘1𝑗(𝐼) if 𝑡 = 1 , as in equations (7.22)

𝒘(1)
𝑡 𝑗
(𝐼 , �̃�) if 𝑡 > 1 and 𝑗 = 𝑗(𝑖 , 𝑡 − 1) , as in equations (2.11, 7.6)

𝒘(0)
𝑡 𝑗
(𝐼) if 𝑡 > 1 and 𝑗 ≠ 𝑗(𝑖 , 𝑡 − 1) , as in equations (2.15, 7.11)
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Prediction 1 (Job Mobility in Response to Public Information) Conditional on pub-
lic information about research ability, workers who produce any public innovation while
being employed by less productive firms are

a) more likely to move to a new employer,

b) more likely to move to an employer with higher innovation productivity

than coworkers without innovation.

Public signals such as a research paper or the delayed revelation of a patent

application improve the market belief about if a worker is 𝐻-ability. The equilib-

rium wages across firms increase in response to the positive public signals, but

importantly, the wage increase is higher at more productive firms due to the com-

plementarity between firms and workers in innovation. Firms with higher 𝜙 𝑗(1·)

in innovation assign more innovation tasks to the same worker, and set dispropor-

tionately higher wages relative to less productive firms. As a result, the model

predicts an increase in inter-firm mobility, and an increase in upward mobility for

workers who release positive signals at lower-productivity firms.

Prediction 2 (Job Mobility under Asymmetric Information: 𝑫𝒊𝒕(11) vs. 𝑫𝒊𝒕(10) )
Workers who have produced a high-quality paper with a matched patent, i.e. 𝐷𝑖𝑡(11) = 1,
while being employed by less productive firms are

a) less likely to leave their incumbent employers when the presence of a matched patent
𝐷𝑖𝑡(11) = 1 is private information;

b) more likely to move and move upward after 𝐷𝑖𝑡(11) = 1 is revealed.

than coworkers with papers but no matched patents 𝐷𝑖𝑡(10) = 1.

The second prediction relies on the assumption that at index period 𝑡 the

outside labor market may see a paper but cannot differentiate between 𝐷𝑖𝑡(10) and

𝐷𝑖𝑡(11) (see 2.3). Incumbent employers set a higher wage based on a more favorable

private belief 𝑃𝑟(𝐻 |𝐼 ∪ �̃�) > 𝑃𝑟(𝐻 |𝐼) when 𝐷𝑖𝑡(11) = 1, and therefore reduces the
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turnover of 𝐷𝑖𝑡(11) = 1 workers relative to coworkers who produce papers without

a matched patent 𝐷𝑖𝑡(10) = 1. Once the matched patent is revealed in the next

period, Prediction 1 re-applies.

Prediction 3 (Job Mobility under Asymmetric Information: 𝑫𝒊𝒕(01) ) Workers who
produce a patent application unrelated to any paper, 𝐷𝑖𝑡(01) = 1, experience a delayed in-
crease in job mobility relative to similar coworkers with 𝐷𝑖𝑡(01) = 0.

The outside labor market does not observe 𝐷𝑖𝑡(01) until the next period (2.3). As

a result, workers who produce any patent application unrelated to papers are

also likely to move later than their coworkers without a patent application, as in

Prediction 2.

I will test the predictions from the equilibrium in Section 4, and estimate the

model to quantify the role of employer learning on job mobility and productivity

in Section 5.

3 Data

I collected data on the career trajectories and research outputs of Ph.D. com-

puter scientists. This section discusses the data sources, the matching between

Ph.D. dissertation records and public LinkedIn profiles, and measures of on-the-

job research that includes conference papers and patent applications.

3.1 Ph.D. Graduates in Computer Science

I focus on Ph.D. graduates in CS or closely related fields, who, like eco-

nomics Ph.D.s, may take a tenure-track or postdoc job in academia, or a job outside

academia that can also be research-intensive.21 The share of new CS Ph.D.s enter-

21See Appendix Figure B2 for research scientist job ads. CS Ph.D.s may also work as engineers,

but they often start as senior software engineers directly or as research engineers who also publish
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ing the industry as opposed to academia has been increasing over the past 20 years

and exceeding 50% since 2017 (see Appendix Figure B3). On the ProQuest Theses

and Dissertation Database, I found about 81,000 Ph.D. dissertations in Computer

Science or Electrical Engineering from the top 60 CS schools in the United States,

between 1980 and 2021.22 Each dissertation record provides the full name of the

doctoral recipient, school, and year of PhD.23

3.2 Public LinkedIn Profiles of CS Ph.D.’s

To gather information on the career progression of CS Ph.D.’s, I develop a

program that acts as a recruiter and views public profiles on LinkedIn, the largest

online professional network. For each person in the dissertation sample, I submit

a web query that searches by the person’s full name, PhD institution, and degree

information.24 About 51% queries returned at least one LinkedIn profile, and there

are about 41,000 fully matched profiles in total.25

Each profile is formatted as a résumé. The program collects public infor-

mation such as profile summary, education background, and employment history.

I construct a longitudinal dataset of post-Ph.D. employment history for the fully

matched LinkedIn profiles. On average a person has 2.1 industry employers, 0.2

postdoc employers, and 0.3 academic (tenure-track) employers after Ph.D. (Table

papers.

22The top schools are identified from the ranking of computer science institutions in the U.S. at

CSRankings, which is developed and maintained by Emery Berger at UMass Amherst.

23Appendix Table B2 displays the number of dissertations by year.

24Appendix Figure B5 shows a sample query on LinkedIn Recruiter Platform. A LinkedIn profile

is considered fully matched to the PhD graduate only if the first name, last name, and PhD institution

are matched exactly, and the year of Ph.D. completion is the same whenever it is available on the

profile.

25See Appendix 7 for details. The matching rate is higher for more recent cohorts (Figure B3).

LinkedIn was first launched in 2003, and its members grew from 37 million in 2009 to 875 million

in 2023.(https://www.businessofapps.com/data/linkedin-statistics/).
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B5). For each person×year, I record the primary employer and job title.26 The

person×year panel has about 647,000 observations.

A job-to-job movement in year 𝑡 is defined as a change in one’s primary

employer in comparison with her employer next year: 𝑗(𝑖 , 𝑡) ≠ 𝑗(𝑖 , 𝑡 + 1). Years

without any employer would not be considered as a job movement. About 12% of

workers at non-top firms move to a new employer per year, whereas workers at top

firms or in academia are less mobile (Table B6).

3.3 On-the-job Research

3.3.1 Computer Science Papers

To measure the research productivity of Ph.D. computer scientists, I collect

papers that are published in 80 CS conferences and two machine learning journals,

which are used to rank CS departments across all areas in CSRankings. I search

for papers at each conference/journal×year on Scopus, a large-scale publication

database produced by Elsevier.27 Each paper comes with a complete list of authors

and their affiliations, which indicate the employer of an author at the time of

publication. I cross-validate the data from Scopus by merging it with paper-author

records on DBLP, a popular computer science bibliography (see Appendix B for

details).

To match papers with individuals’ education and employment history, I de-

veloped a script to clean and harmonize the names of author affiliations from

Scopus, and the names of Ph.D. schools and employers from LinkedIn. A paper

26If there are more than one employer in a year, I rank the jobs in the order of 1) full-time position

(over contract or visiting), 2) number of months on the job during the year, and 3) tenure on a job

since the earliest date.

27I am especially grateful to Anna Le Sun (Berkeley/Stanford) for her help with the data collection

via Scopus Search API.
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matched to an author’s Ph.D. institution by (author name, affiliation, year of pub-

lication) is labeled as pre-Ph.D. research. After Ph.D., a paper is considered as

on-the-job research if the author affiliation matches with her incumbent employer

at the time of publication.28 About 28% of matched computer scientists have at least

one on-the-job research publication post Ph.D. (Table B5). The publication rate at

person-year level is higher at top firms: 10% of employees of top firms publish a

paper per year, versus 2% of employees of non-top firms do so (Table B6).

3.3.2 Paper-Patent Matches

Firms often protect inventions that are disclosed in a research paper through

patents. I establish a potential paper-patent linkage if the following conditions are

satisfied:

1. The majority of authors in the paper are also inventors in the patent

application and vice versa.

2. A patent assignee can be matched to an author’s affiliation on the paper,

which is also her current employer as shown on LinkedIn.

3. The patent application is initially filed between [−2, 1] years relative to

the publication of the paper (using conference date).29

4. Text is similar: the 𝑙2 norm between the vector embedding of the

paper’s title plus abstract and the embedding of the patent’s is ≤ 0.33.

30

28The publication cycle is significantly shorter in computer science. It is unlikely for a dissertation

chapter to be published as a conference proceeding years later. I further check if coauthors on a

paper are affiliated with the Ph.D. school or with the current employer. Roughly 1% of post-PhD

publications have the majority of coauthors affiliated with the Ph.D. school, and are excluded from

on-the-job research production.

29The patent laws in the U.S. allow the inventors to apply for a domestic patent for inventions that

are disclosed in any publication no earlier than a year ago. In most other countries, inventions that

have been disclosed, for example via a research paper, cannot be filed as a patent application.

30The text embedding of a paper or a patent application was obtained via GPT4-ada, a state-of-

the-art large language model trained by OpenAI. The threshold for the distance between a paper’s

embedding and a patent’s embedding is selected based on the ROC curve in Appendix Figure B6

to balance between false positive and false negative rates.The norm of an embedding vector is one.

Ranking paper-patent pairs by 𝑙2-norm between vectors is equivalent to ranking them by cosine

distance.

21



For each paper, I sort potential patent matches that satisfy the criterion above by the

number of shared team members, the distance between embeddings, and the time

difference between the earliest filing of a patent application and the publication

date of the paper, in ascending order. I keep the first patent application returned

as the best possible match to the paper.

About 25% of papers by matched computer scientists from industry, and 5%

of papers by those from academia, are accompanied by a patent application. 90%

of the matched patent applications are filed before the research paper shows up at

a conference, and the other 10% are filed within 12 months. Table 2 and Appendix

Table B7 provides examples of paper-patent matches. They may have different

titles, but discuss the same set of research findings. CS papers tend to be shorter,

while patent applications contain more technical details and are more precise about

contributions that can be claimed as inventions than what one can observe from a

paper alone.

Table 2: Examples of CS Papers and Matched Patent Applications

Firm Team Text Distance Paper Matched Patent Application

Yahoo 100% 0.233 UNBIASED ONLINE AC-

TIVE LEARNING IN DATA

STREAMS; 08/2011

ONLINE ACTIVE LEARN-

ING IN USER-GENERATED

CONTENT STREAMS; Filed:

10/2011, Published: 05/2013

Adobe 80% 0.273 FORECASTING HUMAN

DYNAMICS FROM STATIC

IMAGES; 07/2017

FORECASTING MULTI-

PLE POSES BASED ON A

GRAPHICAL IMAGE; Filed:

04/2017, Published: 10/2018

Papers with a matched patent are higher quality on average. In the first year,

they receive roughly the same citations as those without a matched patent. But

the gap starts to expand around two years after the paper becomes public, which

coincides with the disclosure of patent applications (Appendix Figure B1). The

quality difference between papers with and without a matched patent suggests: 1)
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Figure 2: Citations Received by Papers With vs. Without a Matched Patent Appli-

cation
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Notes: See Appendix B for details on the measure of paper citations and the reweighting

procedure to adjust for firm-year heterogeneity in patenting a CS paper.

incumbent employers have additional information about the quality of a paper and

can act on it by filing for a patent, 2) it takes time for the outside market to recognize

valuable research and the timing of the divergence in citations is consistent with

the revelation of a matched patent application.

3.3.3 Other Patent Applications

To obtain a more complete picture of innovation activity, I merged the panel

of CS Ph.D.s with US patent applications that are not related to papers. I require

the assignee (firm) on the application to be the same as the inventor’s employer as

reported on LinkedIn, and the year of the initial filing to fall within the years she

works at the firm. Over 40% of the computer scientists have at least one patent

application after PhD (Table B5).

To be consistent with the notation in the model (Table 1), I summarize the inno-
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vation output at person-year level by (𝐷𝑖𝑡(11), 𝐷𝑖𝑡(11), 𝐷𝑖𝑡(01)), in which𝐷𝑖𝑡(11) = 1

if worker 𝑖 has any paper with a matched patent application in year 𝑡, 𝐷𝑖𝑡(10) = 1

if she has paper(s) but none of which is matched to a patent application, and

𝐷𝑖𝑡(01) = 1 if she has any patent application unrelated to CS papers.

4 Empirical Tests for Employer Learning

We test the model predictions on how individual job mobility changes with

signals about their research ability. There is evidence of public learning (Prediction

1) as inter-firm and upper mobility increases for workers who publish at non-top

firms, relative to similar coworkers. To test for asymmetric learning, I leverage

the delayed disclosure of patent applications. Initially, authors of papers with a

matched patent are less likely to move than authors without a patent application.

But once the patent application becomes public, their mobility rates cross over.

Authors of papers with a matched patent are also 35% more likely to move to a top

tech firm.

4.1 Public Learning: Mobility Responses to CS Papers

To test for public learning in Prediction 1, I compare the job mobility between

workers who produce a CS paper and their coworkers without a paper. Figure 3(a)

first shows the raw differences (blue bars) in inter-firm mobility between these two

groups. At nontop firms, workers who produce a paper are on average 4pp or 35%

more likely to move to a new firm the next year. This difference remains significant

(yellow bar) when I control for firm-year fixed effects to compare coworkers at the

same firm in the same year, and additional worker characteristics such as PhD

school and cohort, experience and current position types. With the same set of
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Figure 3: Differences in Inter-firm Mobility: With vs. Without a Paper
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Notes: The blue bars are unadjusted raw gaps in job mobility, whereas the yellow bars are adjusted

in a regression that controls for Ph.D. school, experience since Ph.D., firm-year fixed effects and

other controls listed under Table 3. 𝜇0 refers to the mean mobility among workers without a new

CS paper.

controls, I also find a significant but smaller increase in mobility when workers in

academia publish a new paper, but there is no change in inter-firm mobility for

workers who are already employed at the top firms.31 Given the lower publication

rate on average at nontop firms, I interpret them as less innovative firms relative

to the top firms. The increase in job mobility for workers who publish at nontop

firms provides evidence for Prediction 1(a).

Figure 3(b) further shows workers who publish a paper at nontop firms are

twice as likely to move to a top firm the next year relative to similar coworkers.

Academics who publish are also more likely to move to top firms but at much lower

rates. Publications appear to help employees at top firms stay within the top tier,

but the difference is noisily estimated.

31“Academia” includes postdocs and professors. The raw difference in academia is negative in

Figure 3(a), but it is driven by the fact that professors publish papers at higher rates than postdocs

but are less mobile. Once I control for position type, I find a 0.5pp significant increase in job mobility

in academia.
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4.2 Asymmetric Learning: Papers vs. Patent Applications

We consider how job mobility changes with public versus (initially) private

signals about research ability:

𝑀𝑖𝑡 =
∑

𝑘∈{11,10,01}
𝜷𝒌 × 𝐷𝑖𝑡(𝑘)︸                      ︷︷                      ︸

new signals

+
∑

𝑘∈{11,10,01}
𝜸𝒌 × Lagged-𝐷𝑖𝑡(𝑘)︸                                  ︷︷                                  ︸

lagged signals from [𝑡−3,𝑡−1]

(4.1)

+ 𝑊 ′
𝑖𝑡 Γ︸︷︷︸

controls

+𝜇𝑗(𝑖 ,𝑡), 𝑡︸ ︷︷ ︸
firm-yr

+𝜉𝑖𝑡

where 𝑀𝑖𝑡 is a mobility outcome at person×year level, which can be any movement

between firms, or a movement into a top firm. The firm-year fixed effects, denoted

by 𝜇𝑗(𝑖 ,𝑡),𝑡 , absorb firm-specific shocks such as a layoff, and allow me to compare

workers within the same firm. 𝑊𝑖𝑡 is a vector of worker characteristics such as

educational background (bachelor and Ph.D.), gender (from first names or profile

pictures), and time-varying controls such as a polynomial of experience since Ph.D.

and position types (e.g., engineers vs. scientists).

The innovation output by each worker 𝑖 in year 𝑡 is summarized by 𝐷𝑖𝑡(𝑘) for

𝑘 ∈ {11, 10, 01} (Table 1). There are two margins of asymmetric learning. First,

given a paper, the outside labor market does not know if it is matched to a patent

application that will be disclosed later. That is, 𝐷𝑖𝑡(10) versus 𝐷𝑖𝑡(11) cannot be

differentiated by outside employers at 𝑡. Second, whether a worker has any patent

application unrelated to paper, 𝐷𝑖𝑡(01) would also be private information for the

first 18 months.

In three years, 95% of the patent applications will become public information

(see Appendix Figure B1). Define Lagged-𝐷𝑖𝑡(11) = 1 if a worker produces any
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paper with a matched patent application in the past three years, Lagged-𝐷𝑖𝑡(10) = 1

if she produces paper(s) during [𝑡−3, 𝑡−1] but none of which is matched to a patent,

and finally Lagged-𝐷𝑖𝑡(01) = 1 if she applies for a patent unrelated to CS papers.

The lagged indicators for innovation output are public information. We can then

translate the model predictions as follows for workers who are employed by less

innovative nontop firms:

Prediction 1 → 𝛽10 > 0, 𝛽11 > 0 (4.2)

Prediction 2 → 𝛽11 < 𝛽10, whereas 𝛾11 > 𝛾10 and 𝛾11 > 0

Prediction 3 → 𝛾01 > 0

in which 𝛽𝑘 captures the difference in outcome 𝑀𝑖𝑡 between workers who produce

𝐷𝑖𝑡(𝑘) = 1 and those without neither a paper nor a patent application, and 𝛾𝑘 rep-

resents represents the gap between workers who have produced Lagged-𝐷𝑖𝑡(𝑘) = 1

during [𝑡−3, 𝑡−1] and those without any innovation output in the past three years.

We estimate 4.1 separately for workers who are currently employed by nontop

firms, top firms, or academia as in Figure 3. For each person, I keep years of full-time

employment post Ph.D. and post 2000.32

At nontop firms, workers who has a new paper but no matched patent are 3.5

pp (𝑡 ≈ 6) or 26.3% more likely to move than similar coworkers without any innova-

tion (column 1 of Table 3).33 Workers who produce a paper with a matched patent

32There are employment records before 2000 for earlier Ph.D. cohorts but given the relatively

short history of CS conferences, I collect publications data post 2000.

33Appendix Table C1 shows estimates of Poisson regression:

𝐸[𝑀𝑖𝑡 |𝐷𝑖𝑡 , Lagged-𝐷𝑖𝑡 ,𝑊𝑖𝑡 , 𝑗(𝑖 , 𝑡)] =𝑒𝑥𝑝 ©«
∑

𝑘∈{11,10,01}
𝜷𝒌 × 𝐷𝑖𝑡(𝑘) +

∑
𝑘∈{11,10,01}

𝜸𝒌 × Lagged-𝐷𝑖𝑡(𝑘) +𝑊 ′
𝑖𝑡 Γ + 𝜇𝑗(𝑖 ,𝑡), 𝑡

ª®¬
(4.3)
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Table 3: Effects of Papers & Matched Patents on Job Mobility

Move between Firms Move into Top Firms

(1) Nontop (2) Top (3) Academia (4) Nontop (5) Top (6) Academia

CS Papers at t : Dit(10) vs. 𝑫𝒊𝒕(11)

Paper only 0.0351 -0.0012 0.0052 0.0186 0.0032 0.0018

(0.0060) (0.0042) (0.0024) (0.0034) (0.0036) (0.0009)

Paper+Matched Patent 0.0200 0.0016 -0.0023 0.0135 0.0020 0.0020

(0.0102) (0.0062) (0.0063) (0.0059) (0.0055) (0.0027)

CS Papers in [t − 3, t − 1]: Lagged-𝑫𝒊𝒕(10) vs. Lagged-𝑫𝒊𝒕(11)

Paper only 0.0009 0.0009 0.0077 0.0036 -0.0003 0.0047

(0.0035) (0.0031) (0.0022) (0.0017) (0.0028) (0.0008)

Paper+Matched Patent 0.0195 0.0068 0.0039 0.0107 0.0003 0.0053

(0.0065) (0.0051) (0.0045) (0.0039) (0.0047) (0.0020)

Patents unrelated to CS Papers

𝐷𝑖𝑡(01) -0.0125 -0.0047 -0.0052 -0.0003 0.0084 0.0022

(0.0023) (0.0029) (0.0039) (0.0011) (0.0025) (0.0013)

Lagged-𝐷𝑖𝑡(01) 0.0052 -0.0013 0.0058 0.0023 0.0033 0.0004

(0.0018) (0.0024) (0.0027) (0.0009) (0.0021) (0.0009)

Mean .1141 .0655 .0746 .0180 .9485 .0067

N 224K 66K 121K 224K 66K 121K

Adj. 𝑅2
.1377 .0179 .1167 .0350 .0112 -.0109

Notes: This table presents regression estimates of equation (4.1). The estimation sample is at

Person×Year level, restricted to years with nonmissing full-time employment after PhD. The first

three columns show the results for any move between firms as the dependent variable,𝑀𝑖𝑡 = 1[𝑗(𝑖 , 𝑡+
1) ≠ 𝑗(𝑖 , 𝑡)], separately by the group of origin 𝑗(𝑖 , 𝑡) ∈ {Non-top Firms, Top Firms,Academia}. The

next three columns have 𝑀𝑖𝑡 = 1[𝑗(𝑖 , 𝑡 + 1) ∈ Top Firms] as the dependent variable.

All regressions control for education background (whether a bachelor’s degree was granted in the

United States, and Ph.D. school fixed effect), a cubic polynomial of years since Ph.D. as experience

(divided by 10), current position types (scientist/engineer/manager), seniority or academic job

rank based on job titles on LinkedIn, and firm-year fixed effects. Standard errors are robust and

clustered at (Ph.D. school, graduation cohort) level.
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(𝐷𝑖𝑡(11) = 1) also see a 2.0 pp or 15.0% increase in next-year inter-firm mobility, but

to a lesser extent than workers with 𝐷𝑖𝑡(10) = 1. The positive effects of having any

paper for next-year mobility among employees at non-top firms is consistent with

Figure 3 and provides evidence for Prediction 1 (4.2) on public learning. We find

the estimated 𝛽11 < 𝛽10, which suggests nontop firms as incumbent employers can

make workers with paper+matched patent stay longer (Prediction 2a, see 4.2). But

(�̂�11 − �̂�10) is not significantly different from 0.

There is stronger evidence for asymmetric learning as in Prediction 2b when

I examine the relationship between lagged innovation outputs with job mobility.

Conditional on the latest innovation, having any paper but no matched patent in

the past three years no longer matters for inter-firm mobility even for workers at

nontop firms. In contrast, the presence of a paper with a matched patent during

[𝑡 − 3, 𝑡 − 1], i.e. Lagged-𝐷𝑖𝑡(11) = 1, predicts a �̂�11 = 2.0-pp 0r 14% significant

increase in job movement at 𝑡. Since Lagged-𝐷𝑖𝑡(10) vs. Lagged-𝐷𝑖𝑡(11) represent

signals that are revealed to the public with a delay, the positive estimate for 𝛾11 and

the finding that 𝛾11 > 𝛾10 supports Prediction 2b (see 4.2).

Papers in index year 𝑡 or the past three years do not predict a job movement out

of a top firm, which is often viewed as the top of the job ladder in the tech industry

(column 2). Column 3 shows that productive authors in academia experience a

0.5-0.8 pp increase relative to coworkers without a paper. Whether a paper has

a matched patent or not does not matter in academia, where less than 5% of CS

papers are filed as patent applications.34

Columns 4-6 of Table 3 presents the estimates of (4.1) for 𝑀𝑖𝑡 = 1[𝑗(𝑖 , 𝑡 + 1) ∈

Top]. For workers at nontop firms, this outcome represents upward mobility to a

34Papers that are filed as patent applications by academics often represent collaborations with

the industry and matter less for tenure evaluation within academia.
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top firm in the industry.35 We find a 1.4-1.9 pp increase in upward mobility when

employees of nontop firms publish a new paper, consistent with Figure 1b and

supporting Prediction 1b. Lagged papers with a matched patent predict another

1pp or ?% increase in upward mobility, further providing evidence for asymmetric

learning from initially private information. For workers in academia (column

6), papers predict moving to a top firm, which represents a wage increase that I

show formally in Appendix Table ?. We do not find evidence that CS papers (and

matched patents) matter for retention or movement between top firms (column 5).

It is consistent with the model predictions that having a CS paper and a higher-

quality paper with a matched patent matter more for workers who are outside the

top firms.36

Finally, I show a delayed mobility response to patent applications that are

unrelated to CS papers, as in Prediction 3. Workers who file new patent applications

are less likely to leave their incumbent employers in the same year (�̂�01 < 0 in

columns 1-3). But I find a positive relationship between lagged patent applications

during [𝑡−3, 𝑡−1] and job mobility among workers at nontop firms (columns 1 and

4), supporting (4.2) implied by Prediction 3. In comparison with the estimates on

CS papers, traditional patent applications are less predictive of job movements for

computer scientists. This feature is not surprising given the emphasis of publication

record in recruiting of computer scientists (Appendix Figure B2).

In summary, computer scientists who publish papers at nontop firms are more

likely to move to a new firm and move up the job ladder, providing evidence for

35This definition of upward mobility is imperfect. There may be smaller, more innovative firms

than the tech giants. We show results on alternative upward mobility outcomes in Appendix Table

?.

36Equilibrium wages are increasing in a firm’s (innovation) productivity. Workers who are

revealed to be good researchers are more easily lured away by more productive employers that can

offer a higher wage.
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public employer learning from CS papers. At nontop firms, workers who produce

papers with matched patents, which are initially private information, experience a

delayed increase in job mobility. The mobility responses to signals from CS papers

are stronger for less experienced individuals (Appendix Figure C1). Alternative

tests that exploit within-person variation in innovation production also provide

similar evidence of employer learning, which I discuss in Appendix C (Table C2).

4.3 Additional Evidence of Learning: Wage Growth and Promotions

The evidence of symmetric and asymmetric learning is not limited to the

inter-firm mobility outcomes I present above. An alternative definition of upward

mobility is moving to a higher-paid firm. Without access to administrative wage

records, I use the average wages posted for H1-B or PERM workers at firm×year

or firm×year×position levels. At nontop firms, workers with a new paper are

2-3 pp more likely to move to a higher-wage firm the next year (Appendix Table

C3). Lagged papers with matched patents also increase likelihood of moving to

a higher-wage employer, and the likelihood of moving to a higher-wage position,

both of which support asymmetric learning as in Prediction 2.

Publishing a paper also increases the chance that workers in the industry move

to academia the next year (columns 5-6 of Table C3). Employees who publish at

either nontop or top firms are twice as likely to move to an academic employer than

their coworkers. Whether the paper has a matched patent application, which may

indicate higher commercialization value, matters less for getting a job in academia.

The role of publications in helping academia identify talent from the industry

is policy relevant, given the rising concerns about the competition for AI talent

between academia and the private sector (Gofman and Jin 2022).

Promotions are another set of important mobility outcomes. Pastorino (2023)
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estimates that employer learning explains 25% of early-career wage growth within

a firm, and promotions are responsible for almost all of the impact of learning on

wages. We consider a change in job titles as a promotion if the new title includes

keywords such as “senior”.37 We estimate (4.1) with internal promotion as the

outcome variable on stayers who are not moving to a new firm the next year.

CS papers (new or lagged with matched patents) are positively associated with

promotions (columns 1-3 of Appendix Table C4). Although incumbent employers

can differentiate between 𝐷𝑖𝑡(10) and 𝐷𝑖𝑡(11) without any delay, I do not find

that workers who produce a paper with a matched patent are getting promoted

faster than those with only a paper. This finding supports the promotion-as-signal

model in Waldman (1984), which predicts that incumbent employers would delay

promotions (public signals) to retain privately known talent longer.

That being said, there is evidence of internal reallocation of workers even

under the presence of asymmetric information. Column 4 of Table C4 shows that

𝐷𝑖𝑡(11) workers at nontop firms are 1 pp more likely than 𝐷𝑖𝑡(10) = 1 workers

to become a research scientist the next year.38 In contrast, innovation outputs are

less predictive of a worker becoming a manager (columns 8-9), and appear to be

negatively correlated with becoming a engineer at top firms (column 7).

In summary, I present empirical evidence of both symmetric and asymmetric

employer learning by estimating the changes in job mobility upon information

revelation. Our main results support the model-based predictions on inter-firm

mobility among productive employees who are not at the top of the job ladder.

37For example, a change from “engineer” to “senior engineer” or “staff engineer” is coded as a

promotion. In academia, getting tenured is a promotion.

38Moving from a non-scientist to a scientist role is not coded as a promotion, unless the job title

includes keyword such as “senior”.
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5 Quantitative Analysis

How much does employer learning matter for reducing misallocation of tal-

ent? To answer this question, I estimate a structural version of the model of

employer learning and sorting formulated in Section 2. Employer learning from

on-the-job research matters as much as learning from initial information such as

PhD ranking. Without employers’ belief update from public research records, in-

novation output by computer scientists would drop by 16%. Disclosing patent

applications one year faster has a small but positive impact on overall innovation,

which is driven by faster sorting of 𝐻-ability workers into top firms.

5.1 Model Estimation

I discuss the structural parameters and present the estimation procedure that

is based on the nested fixed point algorithm (Rust 1987; Rust 1994). The goal is

to find estimates that maximize the joint likelihood of job histories and innovation

outputs in the first five years of their post-PhD career.39 I show the model fit and

the learning process evaluated at the maximum likelihood estimates.

5.1.1 Parameters and Identification

There are four sets of model parameters that govern each of the following in

the structural model: (1) common prior conditional on initial information, (2) labor

supply, (3) firm productivity, and (4) worker productivity.

First, I assume the labor market forms a common prior based on initial infor-

mation 𝐼𝑖1 about a new Ph.D., comprising {PhD School Rank, Num. Papers before

39The choice of 𝑇 = 5 allows me to build a balanced panel for 18, 860 The first few years are

particularly important for employer learning, as evidenced by Altonji and Pierret (2001) and Farber

and Gibbons (1996)) and also verified in this labor market in Figure C1.
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Table 4: Overview of Model Parameters

Parameters Description

I. Common Prior
𝛿 Given initial information 𝐼𝑖1, prior:

𝑃𝑟(𝛼𝑖 = 𝐻 |𝐼𝑖1; 𝛿) = 𝑒𝑥𝑝 (𝛿′𝑋(𝐼𝑖1))
1 + 𝑒𝑥𝑝 (𝛿′𝑋(𝐼𝑖1))

(5.1)

II. Labor Supply
𝑏, {𝜌𝐺}, {𝜂·𝐺} Worker’s utility (2.7): weight on log wage and GEV-preferences (2.5)

{𝜆·,𝐺}, {Λ·} Prob. re-entering the labor market (2.6) and moving bet. academia

and industry.

III. Firm Productivity
𝜙 𝑗 Baseline productivity of 16 groups of employers (Appendix D)

{𝜙 𝑗(𝑘) : 𝑘 = 10, 01} Returns to each type of innovation: patent 𝜙 𝑗(01) calibrated, 𝜙 𝑗(11)
is assumed to be a weighted avg of 𝜙 𝑗(10) and 𝜙 𝑗(01)

IV. Worker Productivity
𝑝𝛼 , �̃�𝛼 , 𝑞𝛼 Ability-specific productivity in innovation (Table 1)

PhD, Nest of the First Job}:40 I observe each person’s education and publication his-

tory before PhD. The initial placement𝐺𝑖1 ∈ {Tenure-track, Postdoc, Top Firms, Nontop Firms}

is also part of 𝐼𝑖1 to allow employers have additional information that matters for

the initial sorting between academia and industry.41 The identification of 𝛿 in (5.1)

relies on within-firm variation in initial background between coworkers.

The second set of parameters in Table 4 enters a nested logit model for workers’

choices between differentiated employers (2.8). The ratio
𝑏
𝜌𝐺

governs the elasticity

of labor supply (7.5) for employees in nest 𝐺. In addition, the parameters {𝜆·,𝐺}

decide the rate at which workers can get on the labor market and search for jobs at

𝑡 > 1, and {Λ·} decide if academic employers are open to workers from industry

40Let 𝑟𝑖 denote the rank of PhD school, 𝑛𝑖 denote the number of her papers before PhD,

and 𝐺𝑖1 ∈ {0, 1, 2, 3} denote the nest of her employer at 𝑡 = 1, which correspond to

{Tenure-track, Postdoc, Top Firms, Nontop Firms}. I define a vector of controls: 𝑋(𝐼𝑖1) =(
𝑟𝑖 , 𝑟

2

𝑖
, 𝑛𝑖 , 𝑛

2

𝑖
, 1[𝐺𝑖1 = 0], 1[𝐺𝑖1 = 1], 1[𝐺𝑖1 = 2], 1[𝐺𝑖1 = 3]

)
.

41The underlying assumption is that any information observed by employers but not us can be

absorbed by the nest of a person’s first job.
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and vice versa. Parameters on labor supply are identified by revealed preferences

and variations in retention rates within and between nests.

There are more than seven thousand unique employers in the balanced panel

of workers. Following Bonhomme et al. (2022), I classify them into 16 𝑗’s and allow

heterogeneous productivity between 𝑗 but not within42. As shown in Appendix

Table D2, the labor market has a nested structure. There are two 𝑗’s (henceforth

employer) on the tenure-track, two postdoc employers, six top firms (each as its own

𝑗), and six nontop employers that are grouped based on their patenting activity.43

The baseline productivity 𝜙 𝑗 matters for the average wage level and thus the size

of 𝑗. Returns to CS papers, denoted by 𝜙 𝑗(10), matter for the allocation to paper-

related innovation tasks, and are identified from movers who become more (less)

likely to publish when moving to a higher (lower) 𝜙 𝑗(10) employer.

The fourth set of parameters represents the ability-specific productivity in

innovation in Table 1. Conditional on the information state, coworkers of differ-

ent abilities would be assigned the same innovation task (𝜏). The gap in their

publication rate allows me to identify 𝑝𝐻 vs. 𝑝𝐿.

5.1.2 Estimation Procedure

Let 𝛿 denote the parameters in common prior (5.1), and Γdenote the rest of the

structural parameters to be estimated in Table 4. Given data on the each person’s

job history { 𝑗(𝑖 , 𝑡)} and innovation outputs 𝑑𝑖𝑡 B [𝑑𝑖𝑡(11), 𝑑𝑖𝑡(10), 𝑑𝑖𝑡(01)], I search

42This grouping is equivalent to assuming that employers within a group are perfect substitutes

to workers, i.e. diversity between employers within a group is not valued, as remarked in Dixit and

Stiglitz (1977).

43I estimate a regression of any patent application on firm fixed effects and worker characteristics.

I rank nontop firms according to the estimated fixed effects, which are also used to calibrate patent

productivity 𝜙 𝑗(01) (see Table D2).
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for estimates of (𝛿, Γ) that solve:

𝑚𝑎𝑥(𝜹,𝚪) 𝑙𝑛

(∏
𝑖

𝐿𝑖({ 𝑗(𝑖 , 𝑡), 𝑑𝑖𝑡} |𝐼𝑖1; 𝛿, Γ)
)

(5.2)

=
∑
𝑖

𝑙𝑛
©«
∑
𝜶

𝑃𝑟(𝛼 |𝐼𝑖1; 𝛿)︸       ︷︷       ︸
prior

×𝐿𝑖({ 𝑗(𝑖 , 𝑡), 𝑑𝑖𝑡} |𝐼𝑖1, 𝜶;Γ)
ª®®®¬

in which 𝐿𝑖(·|𝐼𝑖1, 𝜶; Γ) =
∏
𝑡

𝑠𝑖𝑡 𝑗(𝑖 ,𝑡)(𝐼𝑖𝑡 , �̃�𝑖𝑡 ;Γ)︸              ︷︷              ︸
labor supply

×𝑃𝑟(𝐷𝑖𝑡 = 𝑑𝑖𝑡 |𝜶, 𝜏𝑖𝑡 𝑗(𝑖 ,𝑡);Γ)︸                          ︷︷                          ︸
innovation output

in which information evolves according to (2.3), and the unobserved ability 𝛼𝑖 is

treated as a random effect. Labor supply conditional on information is evaluated

at the MPBNE in Definition 1, which is solved as the fixed point given a guess for

Γ. {𝜏𝑖𝑡 𝑗(𝑖 ,𝑡)} are the optimal task allocations set by employers at the equilibrium.44

Following Rust (1987), our nested fixed point algorithm contains three steps:

Step 0. Given a guess of 𝛿 on initial information, form the prior (5.1) shared

by employers.

Step 1. Given a guess of model parameters Γ, solve each employer’s problem

backward from 𝑡 = 𝑇: at every possible information state (𝐼 , �̃�), calcu-

late the labor supply {𝑠𝑡 𝑗} given the wages posted by firms, and iterate

until I have reached the fixed point 𝑠𝑡 𝑗(𝐼 , �̃�;Γ):45

𝑠𝑡 𝑗(𝐼 , �̃�;Γ) = 𝑠
(
𝑤

(
𝑠𝑡 𝑗(𝐼 , �̃�;Γ)

))
Step 2. Find the maximum likelihood estimates that solve (5.2). Parameters 𝛿

on initial information and model parameters Γ are jointly estimated as

in econometric frameworks with unobserved heterogeneity (e.g., Card

and Hyslop 2005, Wooldridge 2005).

44See equations 2.12, ?? for the optimal task allocations chosen by firms at 𝑡 = 2, 3, 4.

45See Proposition 1 for the existence of the fixed point (2.17).
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5.1.3 Estimation Results

I estimate the structural parameters on a balanced, five-year panel of 18,860

workers who obtained a PhD between 2005 and 2018. This sample is comparable

to the full sample that I use to test for employer learning in Section 5 (see Table D3).

Table D1 presents (�̂�𝑀𝐿𝐸 , Γ̂𝑀𝐿𝐸), the maximum-likelihood estimates of structural

parameters. The predicted share of workers at each employer, found as the fixed

point (2.17) given Γ̂𝑀𝐿𝐸
, falls roughly on the 45-degree line that matches with the

actual shares, at different periods shown in Figure 4.

Figure 4: Model Fit: Allocation of Workers across Employers, 𝑠𝑡 𝑗 vs. 𝑠𝑡 𝑗

(a) 𝑡 = 1
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(b) 𝑡 = 5
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Notes: This figure shows the predicted share of workers at each employer (group) 𝑠𝑡 𝑗
against the actual share 𝑠𝑡 𝑗 , at 𝑡 = 1 and 𝑡 = 5. Given the estimated parameters in Table

D1, I forward simulate the employment path and innovation outputs by each worker in

the balanced sample, holding fixed initial information including the initial nest at 𝑡 = 1

(see 5.1). In the simulated sample, I compute 𝑠𝑡 𝑗 as the share of workers employed by 𝑗,

at experience 𝑡 (yrs after PhD).

High-ability workers are estimated to be four times as likely to produce a paper

per unit of time on innovation tasks as the 𝐿-ability. Conditional on producing a

paper, 𝐻 are more than twice as likely to have a patent application matched to

the paper, which indicates a higher quality innovation. 𝐻 is also more likely to

produce patents unrelated to papers than 𝐿, but the relative gap in patenting is

37



much smaller than in papers.46 Employers Bayesian update beliefs about a worker

based on the innovation outputs they observe. I rank computer scientists by their

cumulative citations and total number of papers and patent applications five years

after PhD. Figure 5 displays the distribution of employer beliefs, separately for the

top 10% computer scientists (as a proxy for 𝐻) versus the bottom 90%. At 𝑡 = 1

beliefs about these two groups overlap substantially, suggesting many workers who

will be in the top 10% look similar to others initially. But employers appear to tell

them apart quickly based on the research outputs they produce. At 𝑡 = 5, there is

a more ovbious divergence of beliefs about the bottom 90% versus the top 10%.

Figure 5: Distribution of Employer Beliefs: Top 10% Computer Scientists versus

Others
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(b) 𝑡 = 5
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𝐻-ability workers produce more papers at tenure-track employers, which

have the highest returns to papers (𝜙 𝑗(10) in Table D2) and assign more innovation

tasks given any employer belief (Figure 6). Top firms (except for Apple) on average

have higher returns to research papers and assign more innovation tasks than

nontop firms. The gap between top and nontop firms in innovation tasks is larger

for workers with employer belief in the range of [0.20, 0.50], who have a nontrivial

46These estimates validate the assumptions 𝑝𝐻 > 𝑝𝐿 , �̃�𝐻 > �̃�𝐿 , 𝑞𝐻 > 𝑞𝐿 under which model

predictions are derived.
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Figure 6: Allocation to Innovation Task against Employer Belief
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chance of having 𝐻-ability but are not fully discovered yet. These potential 𝐻-

ability workers would be better off at a more productive firm that provides more

research opportunities.

5.2 Impacts of Employer Learning on Allocative Efficiency

Given the estimated model, I assess the impact of employer learning on the

efficiency of talent allocation. To do so, I consider five mechanisms that matter for

workers’ sorting between employers and task allocations within a firm:

1. Employer learning from patents unrelated to papers, 𝐷𝑖𝑡(01);
2. Employer learning from papers with matched patents, 𝐷𝑖𝑡(11);
3. Employer learning from research papers, 𝐷𝑖𝑡(10) + 𝐷𝑖𝑡(11);
4. Initial sorting between nests, 𝐺𝑖1;

5. Access to initial information 𝐼𝑖1 \ 𝐺𝑖1.

The first three mechanisms capture employer learning from on-the-job research

outputs after Ph.D., while the last two concern any initial information observed by

employers that shape the common prior about each worker and her sorting between
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academia and industry at 𝑡 = 1. Each mechanism can influence the allocation of

talent by changing the evolution of employer beliefs.47

I measure the efficiency of talent allocation by the mean publication rate

of computer scientists, an outcome that is shaped by task allocation within each

firm and sorting of 𝐻 vs. 𝐿 between firms. Figure 7(a) shows how this outcome

would change when I shut down the mechanisms one by one (in the order above),

relative to the benchmark where all mechanisms are at play.48 Shutting down

learning from patent applications unrelated to papers reduces publication rate by

just 0.9%, which makes sense as 𝐻 and 𝐿 are not as different in patenting as in

producing papers. The first substantial drop in publication rate occurs when I shut

down employer learning from CS papers. That is, employers no longer update their

beliefs based on whether workers have produced a paper. As a result, employers do

not assign more innovation tasks to workers who publish, nor are 𝐻-ability sorted

into more productive firms as efficiently as before. Together, employer learning

from innovation outputs {(𝐷𝑖𝑡(11), 𝐷𝑖𝑡(10), 𝐷𝑖𝑡(01)} accounts for the 15.8% of the

overall publication rate.49 Figure D1 further shows that top firms and academic

employers experience a larger loss in innovation when they do not learn from the

innovation output of the workers.

Shutting down initial sorting between nests further reduces the publication

rate by 3.3%, while other initial information such as PhD school and papers before

47For example, if employers do not update their beliefs based on papers produced by workers, they

would not assign additional innovation tasks internally to employees who publish, and authors of

papers would also not receive higher wage offers from other firms than coworkers without a paper.

48The benchmark model I estimated takes all five mechanisms into account. Given (�̂�𝑀𝐿𝐸 , Γ̂𝑀𝐿𝐸)
in Table D1, I first forward-simulate the employment path and innovation output of workers without

shutting down any mechanism. The benchmark publication rate on the simulated sample is 9.23%,

similar to the mean observed in the estimation sample. In each counterfactual, I re-simulate the

data and compute the mean publication rate under the alternative set of mechanisms.

49Appendix D3 provides a between-within decomposition and shows that 30% of the effect is

driven by between-firm sorting whereas the rest is explained by less efficient task alloctaion within

firms.
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Figure 7: Decomposition of Publication Rate (Efficiency of Talent Allocation)

PhD accounts for 11.7%. When all five learning mechanisms are removed, the

69.2% of publications remained are explained purely by firm heterogeneity and

worker heterogeneity.50

5.2.1 Shapley Value of Each Learning Mechanism

To address concerns that the counterfactual results in Figure 7 are shaped

by the order of the mechanisms, I estimate the average marginal impact of each

mechanism on allocative efficiency a la Shapley (1953).51

I compute the counterfactual publication outcome under 2
5

possible sets of

50𝐻 remains more productive in innovation than 𝐿, but without employer learning from either

initial information or subsequent outputs, 𝐻 and 𝐿 are assigned the same amount of innovation

task within each firm and move between firms at the same rates.

51Shapley (1953) has been applied to attribute model prediction or goodness-of-fit to individual

features (e.g., Grömping 2007, Lindeman and Gold 1980). Huneeus et al. (2021) also uses Shapley

value to decompose the variance of earning inequality on multiple sources of variation in their

counterfactual analysis.
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mechanisms.52 The Shapley value of mechanism 𝑚 ∈ M = {1, 2, 3, 4, 5} is:

𝑆𝑉𝑚 =
∑

𝑆⊆M\{𝑚}

|𝑆 |! × (|𝑀 | − |𝑆 | − 1)!
|𝑀 |! ×

(
𝐸

[
𝑝𝑖𝑡 |𝑆 ∪ {𝑚}; �̂�, Γ̂

]
− 𝐸

[
𝑝𝑖𝑡 |𝑆; ; �̂�, Γ̂

] )︸                                               ︷︷                                               ︸
Change in publication rate when adding mechanism 𝑚

(5.3)

As shown in Table 5, the five mechanisms jointly account for 31% of the publication

rate, consistent with the last bar in Figure 7. I normalize the Shapley values of the

five features such that they sum to one. The most important feature is employer

learning from the presence of CS papers, with a normalized Shapley value of 49.9%.

Initial information ranks second with an explanatory power of 40.2%. Initial sorting

based on information seen by employers but not us matters much less with a value

of 2%. Learning from patent applications which are not disclosed immediately to

outside employers explain the remaining 8%, which are smaller than learning from

papers but nonnegligible.

Table 5: Shapley Values of Employer Learning vs. Initial Conditions

Employer Learning Initial Conditions

Patent Paper-Patent Paper Initial Sorting Initial Info

Impact on Mean Publication Rate
𝑆𝑉𝑚 (5.3) 0.0014 0.0009 0.0142 0.0005 0.0114

Pct Change 1.51% 0.98% 15.39% 0.55% 12.40%

Normalized 𝑆𝑉𝑚 4.89% 3.18% 49.92% 1.78% 40.23%

Notes: This table shows the estimated Shapley value of each mechanism, the

percentage change relative to the benchmark outcome when all five mechanisms

are considered, and the normalized value such that they sum to one.

52For example, if the set of mechanisms included is {1, 2, 3}, the counterfactual data generation

allows employers to update beliefs based on innovation outputs after PhD, but the initial prior

about every worker equals to the mean prior 0.13 fitted on the original data. If the set is empty, only

worker ability and firm heterogeneity matter for innovation outcome.
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5.3 Asymmetric Learning on Efficiency

Would reducing asymmetric information improve the efficiency of talent al-

location? On one hand, increasing public information about workers can expedite

positive assortative matching between firms and workers. On the other hand, allo-

cation to innovation tasks, like training, would be inefficiently lower when current

firms lose their information rents (e.g., Acemoglu and Pischke 1998).

I answer this question by considering a “symmetric” counterfactual where

𝐷𝑖𝑡(11), 𝐷𝑖𝑡(10), and 𝐷𝑖𝑡(01) are disclosed simultaneously. That is, incumbent em-

ployers no longer hold private information for one period. Given the estimates

in Table D1, I forward simulate the employment path and research production

by workers, holding fixed the initial information. For the counterfactual, I begin

with the same set of workers with the same prior 𝑃𝑟(𝐻 |𝐼𝑖1), and find the equilib-

rium wages and task allocations at each employer under simultaneous information

disclosure.

Figure 8: Upward Mobility from Non-top to Top Firms, Asymmetric vs. Symmetric

(dashed)
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Figure 8 displays the upward mobility for workers who start at nontop firms

but produce different innovation output, under the asymmetric benchmark versus
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the symmetric counterfactual. Workers with output 𝐷𝑖𝑡(11) = 1 can be told apart

immediately from workers with a paper only 𝐷𝑖𝑡(10) = 1 under the counterfactual.

Relative to the asymmetric benchmark, they move to top firms more quickly. In

contrast, workers who only have a paper, 𝐷𝑖𝑡(10) = 1, or no paper at all are as likely

to move upward as before.53

Table 6: Innovation Output under Asymmetric vs. Symmetric Learning

Paper Paper-Patent

Mean % Change Mean % Change

Asymmetric Benchmark
Overall 0.0923 0.0176

Top Firms 0.1120 0.0390

Nontop Firms 0.0429 0.0131

Symmetric
Overall 0.0931 0.97% 0.0179 1.39%

Top Firms 0.1181 5.50% 0.0412 5.50%

Nontop Firms 0.0419 -2.37% 0.0128 -2.12%

Symmetric, 𝜏| Asymmetric
Overall 0.0935 1.30% 0.0180 2.07%

Top Firms 0.1179 5.33% 0.0416 6.69%

Nontop Firms 0.0422 -1.55% 0.0130 -0.73%

The overall publication rate would be 1% higher under the symmetric disclo-

sure (Table 6). Top firms benefit from faster information disclosure, experiencing

a 5.5% increase in innovation output, while nontop firms see a 2.4% decrease. The

change in innovation outcomes comes from two sources: 1) faster sorting of pro-

ductive workers from nontop to top firms, and 2) changes in within-firm allocation

to innovation tasks. To decompose the change, I hold fixed the task allocation

decision made by firms under asymmetric learning in the simulations for the sym-

metric counterfactual. The last set of results in Table 6 shows that CS papers would

53𝐷𝑖𝑡(10) = 1 workers from non-top firms are still more likely to be 𝐻-ability than those with no

publication. They may produce papers with a matched patent later on and benefit from the reduction

of asymmetric information, which would explain the small increase in the share employed by the

top at 𝑡 = 5 in this group.
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increase by 1.3% rather than 0.97% when employers do not adjust their task alloca-

tions (𝜏) in response to the reduction of asymmetric information. In other words,

faster positive assortative matching accounts for 134% of the increase in publica-

tion rate when there is simultaneous disclosure of papers and patents. Incumbent

employers assign fewer innovation tasks just like they would reduce training when

they have less monopsony power, countering the efficiency gains from sorting.

6 Conclusion

This paper tests for employer learning about worker ability and quantifies

the role of learning in improving the allocation of talent in the labor market for

computer scientists. I build a new dataset that combines the employment histories

of newly minted Ph.D.’s in computer science with information on their publications

in major conference proceedings and their patent applications. The matched data

allows me to offer more direct tests of public and private employer learning than

what has been shown in the employer learning literature.

Publishing a CS conference proceeding increases the inter-firm mobility of

a worker at nontop firm by 30%, and almost doubles her chance of moving to

one of the top-6 tech firms in the following year. This pattern suggests a strong

role for public employer learning in the reallocation of workers between firms. To

test for asymmetric learning, I exploit a patent law that delays the disclosure of

patent applications. Higher-quality papers often coincide with a closely related

patent application, but the fact of filing remains private for 18 months. Authors

of such papers experience a delayed increase in inter-firm and upward mobility.

Conditional on origin firm and observable characteristics, they are less likely to

leave the incumbent firms with private information immediately, but once the
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patent applications become public, they experience a strong increase in inter-firm

and upward mobility from nontop firms to top firms in the industry.

The mobility changes around the publication of a CS paper or patent appli-

cation are consistent with predictions from the dynamic framework of employer

learning and sorting in this paper, which introduces information frictions about

talent into an imperfectly competitive labor market. I estimate a structural version

of the model and find that in the absence of employer learning from public research

records, the innovation output of early-career computer scientists would drop by

16%. Disclosing patent applications one year faster would increase innovation by

1%, driven by faster positive assortative matching.

A limitation about the data is that CS Ph.D.’s on LinkedIn are more likely

to work in industry than in academia. I show that workers who publish papers

in the industry are also more likely to move to academia, which suggests those

publications are also valued by academic employers. But more data needs to be

collected on academic computer scientists to investigate if encouraging tech firms

to participate in CS conferences reduces the AI brain drain from academia (e.g.,

Jurowetzki et al. 2021).

This paper suggests that even for a high-skilled group with strong creden-

tials, information frictions are prevalent and result in substantial misallocation of

workers between and within firms. The framework of employer learning under

imperfect competition may help analyze in the role of information frictions in other

labor markets.
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7 Appendix

A. Proofs and Model Extension

A0. Model Timeline

There are 𝑇 ≥ 3 discrete periods in this model. At least three periods are

needed to fully capture the information revelation process: innovation is produced

at an initial employer at 𝑡 = 1; the presence of a paper (𝐷𝑖𝑡(10) +𝐷𝑖𝑡(11) ∈ {0, 1}) is

known by the beginning of 𝑡 = 2; whether a paper from 𝑡 = 1 has a matched patent

application (𝐷𝑖𝑡(11) vs. 𝐷𝑖𝑡(10)), and whether there is a patent unrelated to paper

(𝐷𝑖𝑡(01)), are not revealed until 𝑡 = 3.

1. (𝒕 = 1) New PhD graduates enter the labor market.

(a) Given initial information {𝐼𝑖1} about workers, employers post wages

{𝑤𝑖 1 𝑗} simultaneously and choose the share of time each worker

can spend on innovation tasks, 𝜏𝑖 1 𝑗 ∈ [0, 1].
(b) Each worker observes the wages posted by all firms and chooses

an initial employer 𝑗(𝑖 , 1) that maximizes her utility (2.7) at 𝑡 = 1.

(c) Innovation outputs (??)

(𝐷𝑖𝑡(11), 𝐷𝑖𝑡(10), 𝐷𝑖𝑡(01)) ∈ {(1, 0, 1), (1, 0, 0), (0, 1, 1), (0, 1, 0), (0, 0, 1), (0, 0, 0)}

are realized by the end of 𝑡 = 1 and are fully known to 𝑖’s incumbent

employer 𝑗(𝑖 , 1).
2. (𝒕 = 2) Public information 𝐼𝑖2 and private information �̃�𝑖2 at the begin-

ning of 𝑡 = 2 evolve according to (2.3)

(a) Firms update their beliefs about a worker’s research ability, post

new {𝑤𝑖2𝑗} simultaneously, and choose task allocation {𝜏𝑖2𝑗}. A

firm’s problem is summarized in (2.10) and (2.14).

(b) Workers re-enter the labor market with probability (2.6). If they

are on the market, they observe contracts posted by potential em-

ployers, draws new idiosyncratic preferences that are independent

from her preferences at 𝑡 = 1, and solve (2.7) again. Otherwise,

they stay at their original employers, 𝑗(𝑖 , 2) = 𝑗(𝑖 , 1).
(c) Repeat 1(c).

3. (𝒕 = 3) Public information 𝐼𝑖3 and private information �̃�𝑖3 at the begin-
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ning of 𝑡 = 3 evolve according to (2.3):

Public 𝐼𝑖3 = 𝐼𝑖2 ∪ �̃�𝑖2 ∪ {𝐷𝑖2(11) + 𝐷𝑖2(10)}
Private �̃�𝑖3 = {(𝐷𝑖2(11), 𝐷𝑖2(10), 𝐷𝑖2(01))}

Repeat the rest of 2.

4. (𝒕 > 3) Repeat 3 until period 𝑇 after which the model concludes.

A1. Backward Induction

Details on Workers’ Problem (Section 2.2.2)
Workers who are on the market can choose a new employer as discussed in Section

3.2.1 (see equation 2.7). The choice of an employer is summarized by a static

nested logit model. Given a choice set 𝐶, workers on the market draw idiosyncratic

preferences {𝜖𝑖𝑡 𝑗} from a GEV distribution (2.5).54

Given the wages posted by firms {𝑤 𝑗}, define the inclusive value of a nest 𝐺

of employers as:

𝑊𝐺 B 𝑙𝑛
©«
∑
𝑗∈𝐺

𝑒𝑥𝑝( 𝑏
𝜌𝐺
𝑙𝑛(𝑤 𝑗))ª®¬

Therefore, the choice probabilities given public belief 𝜋 = 𝑃𝑟(𝛼𝑖 = 𝐻 |𝐼𝑖𝑡) that enter

the labor supply can be written as:

𝑠 𝑗 | 𝐶 = 𝑠 𝑗 | 𝐺(𝑗)︸︷︷︸
choose 𝑗∈𝐺(𝑗)

× 𝑠𝐺(𝑗)| 𝐶︸ ︷︷ ︸
choose nest 𝐺(𝑗)∈𝐶

(7.1)

∀𝐺 : 𝑠𝐺 |𝐶 = 1[𝐺 ∈ 𝐶] ×
𝑒𝑥𝑝(𝜂𝐺(𝜋) + 𝜌𝐺 ×𝑊𝐺)∑

𝐺′∈𝐶 𝑒𝑥𝑝(𝜂𝐺′(𝜋) + 𝜌𝐺′ ×𝑊𝐺′)

∀𝑗 ∈ 𝐺 : 𝑠 𝑗 |𝐺 =
𝑒𝑥𝑝( 𝑏𝜌𝐺 𝑙𝑛(𝑤 𝑗))
𝑒𝑥𝑝(𝑊𝐺)

54 Workers who have entered the industry may not be as likely to receive academic offers as

workers who have been working in academia. We assume the choice set 𝐶 includes all nests at 𝑡 = 1

for new PhDs. At 𝑡 > 1, 𝐶 includes academic nests (tenure-track or postdocs) for industry employees

with probability Λ𝐽𝐴, and 𝐶 = {Nontop Firms, Top Firms} with probability (1−Λ𝐽𝐴). Similarly, for

workers in academia at 𝑡 > 1, industry employers are in the choice set 𝐶 with probability Λ𝐴𝐽 . We

take (Λ𝐴𝐽 ,Λ𝐽𝐴) as model parameters that are estimated in Section 5.
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Backward Induction:

I solve for the subgame perfect MPBNE in Definition 1 via backward induction.

Last Period 𝒕 = 𝑻

At the last period𝑇, employer 𝑗’s value function is the sum of expected revenue

generated by period-𝑇 employees net wages:

𝑉𝑇 𝑗 =
∑

𝑖: 𝑗(𝑖 ,𝑇−1)=𝑗
𝑣
(1)
𝑇 𝑗
(𝐼𝑖𝑇 , �̃�𝑖𝑇)︸                     ︷︷                     ︸

Incumbent

+
∑

𝑖: 𝑗(𝑖 ,𝑇−1)≠𝑗
𝑣
(0)
𝑇 𝑗
(𝐼𝑖𝑇)︸                ︷︷                ︸

Workers Outside

(7.2)

where 𝐼𝑖𝑇 represents the public information about worker 𝑖 at the beginning of 𝑇,

while �̃�𝑖𝑇 represents the private information known only if worker 𝑖 is an incumbent

employee. Employers derive optimal contracts for incumbent versus new workers

separately, due to differences in their labor supply and information about their

ability.

Incumbent Employees

Given information (𝐼𝑖𝑇 , �̃�𝑖𝑇) about an incumbent employee 𝑖, employer 𝑗 solves:

𝑣
(1)
𝑇 𝑗
(𝐼𝑖𝑇 , �̃�𝑖𝑇) = 𝑚𝑎𝑥𝒘 ,𝝉 𝑠

(1)
𝑗
(𝒘 , 𝑤−𝑗 ; 𝐼𝑖𝑇)︸             ︷︷             ︸
labor supply

×
(
𝐸𝛼 |𝐼𝑖𝑡∪�̃�𝑖𝑡 [𝑌𝑗(𝛼, 𝝉)] −𝒘

)
︸                         ︷︷                         ︸

MRPL net wage

(7.3)

where 𝑠
(1)
𝑗
(𝒘 , 𝑤−𝑗 ; 𝐼𝑖𝑇) = 1 − 𝜆(𝐼𝑖𝑇)︸     ︷︷     ︸

off market

+𝜆(𝐼𝑖𝑇) × 𝐸𝐶[𝑠 𝑗 |𝐶(𝒘 , 𝑤−𝑗)]︸                          ︷︷                          ︸
on market & enter j again

where𝑤−𝑗 are wages posted by other employers given public information 𝐼𝑖𝑇 , taken

as given by the 𝑗.55 Public information 𝐼𝑖𝑇 matters for the probability at which the

worker re-enters the labor market (2.6). Take derivatives of the objective function

(7.3) over wage 𝒘:

𝜕𝑠(1)
𝑗
(𝒘 ,𝑤−𝑗 ; 𝐼𝑖𝑇)
𝜕𝑤

×
(
𝐸𝛼 |𝐼𝑖𝑇∪�̃�𝑖𝑇 [𝑌𝑗(𝛼, 𝝉)] − 𝑤

)
− 𝑠(1)

𝑗
(𝒘 , 𝑤−𝑗 ; 𝐼𝑖𝑇) = 0 (7.4)

55Wages are posted simultaneously by employers. In equilibrium, 𝑤−𝑗 = 𝑤
(0)
−𝑗 (𝐼𝑖𝑇), the optimal

wages outside firms would post given public information 𝐼𝑖𝑇 .
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letting 𝐺 = 𝐺(𝑗),

𝜕𝑠(1)
𝑗
(𝒘 , 𝑤−𝑗 ; 𝐼𝑖𝑇)
𝜕𝑤

= 𝜆(𝐼𝑖𝑇) ×
©«
𝜕𝑠 𝑗 |𝐺

𝜕𝑤︸︷︷︸
(𝑎)

×𝐸𝐶[𝑠𝐺 |𝐶] + 𝑠 𝑗 |𝐺 ×
𝜕𝐸𝐶[𝑠𝐺 |𝐶]

𝜕𝑤︸      ︷︷      ︸
(𝑏)

ª®®®®®¬
(𝑎) =

𝑏/𝜌𝐺
𝑤

× 𝑠 𝑗 |𝐺 × (1 − 𝑠 𝑗 |𝐺)

(𝑏) = 𝑏

𝑤
× 𝑠 𝑗 |𝐺 × 𝐸𝐶[𝑠𝐺 |𝐶 × (1 − 𝑠𝐺 |𝐶)]

Merging the equations above yields the labor supply elasticity w.r.t. wage for the

incumbent worker 𝑖:

𝜉(1)
𝑖𝑇 𝑗
B

𝜕𝑙𝑛(𝑠(1)
𝑗
(𝒘 , 𝑤−𝑗 ; 𝐼𝑖𝑇))
𝜕𝑙𝑛(𝑤) =

𝑏

𝜌𝐺
× 𝐸𝐶[

𝜆𝐺 × 𝑠 𝑗 |𝐺 × 𝑠𝐺 |𝐶

𝑠
(1)
𝑗︸              ︷︷              ︸
(𝑐)

×
(
1 − 𝜌𝐺 𝑠 𝑗 |𝐺 𝑠𝐺 |𝐶 − (1 − 𝜌𝐺)𝑠 𝑗 |𝐺

)︸                                   ︷︷                                   ︸
(𝑑)

]

(7.5)

where (c) represents the ratio of the probability of an incumbent worker getting

on the market and choosing 𝑗 again to the probability of staying at 𝑗. This ratio

converges to 1 when 𝜆 → 1 (that is, incumbent employees search for new jobs with

probability 1). On the other hand, when 𝜆 is small, the labor supply of incumbent

workers is highly inelastic. Wages at𝑇 would be 0 if𝜆 = 0. If the choice set includes

all employers and 𝜌𝐺 = 1, (d) can be reduced to (1 − 𝑠 𝑗).
Plugging 𝜉(1)

𝑖𝑇 𝑗
into the first order condition (7.4), the optimal wage for an

incumbent worker is:

𝑤
(1)
𝑖𝑇 𝑗

= 𝒘(1)
𝑇 𝑗
(𝑤−𝑗 ; 𝐼𝑖𝑇 , �̃�𝑖𝑇) =𝐸𝛼 |𝐼𝑖𝑇∪�̃�𝑖𝑇 [𝑌𝑗(𝛼, 𝝉

(1)
𝑖𝑇 𝑗

)] × 𝜉(1)
𝑖𝑇 𝑗

×
(
1 + 𝜉(1)

𝑖𝑇 𝑗

)−1︸                  ︷︷                  ︸
markdown

(7.6)

In equilibrium (Definition 1),∀𝐼 : 𝑤−𝑗 = 𝑤
(0)
−𝑗 (𝐼), and we have𝑤

(1)
𝑇 𝑗
(𝐼 , �̃�) = 𝒘(1)

𝑇 𝑗
(𝑤−𝑗(𝐼); 𝐼 , �̃�).
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Taking the derivative of (7.3) over allocation to innovation tasks, 𝜏,

𝜕𝑠(1)
𝑗

𝜕𝜏︸︷︷︸
=0

+𝑠(1)
𝑗

×
𝜕𝐸𝛼 |𝐼𝑖𝑇∪�̃�𝑖𝑇 [𝑌𝑗(𝛼, 𝜏)]

𝜕𝜏
≥ 0 (7.7)

define 𝜏∗𝑇 𝑗(𝐼 , �̃�) B
1

𝜁
𝐸𝛼 |𝐼∪�̃�

[
𝑝𝛼 �̃�𝛼𝜙 𝑗(11) + 𝑝𝛼(1 − �̃�𝛼)𝜙 𝑗(10) − 1

]
−→ 𝝉(1)

𝑖𝑇 𝑗
= 𝑚𝑎𝑥{0, 𝑚𝑖𝑛{1, 𝜏∗𝑇 𝑗(𝐼𝑖𝑇 , �̃�𝑖𝑇)}}

Outside Workers

For an outside worker 𝑖 from 𝑗(𝑖 , 𝑇−1) ≠ 𝑗, employer 𝑗 only has access to public

information 𝐼𝑖𝑇 . The value function is therefore expected over private information

�̃� conditional on 𝐼𝑖𝑇 . Specifically, employer 𝑗 solves:

𝑣
(0)
𝑇 𝑗
(𝐼𝑖𝑇) = 𝑚𝑎𝑥𝒘 ,𝝉𝐸�̃� |𝐼𝑖𝑇 [ 𝑠

(0)
𝑗
(𝑤, 𝑤−𝑗 ; 𝐼𝑖𝑇 , �̃�)︸               ︷︷               ︸
labor supply

×
(
𝐸𝛼 |𝐼𝑖𝑇∪�̃�[𝑌𝑗(𝛼, 𝝉)] −𝒘

)
︸                        ︷︷                        ︸

MRPL net wage

] (7.8)

where 𝑠
(0)
𝑗
(𝑤, 𝑤−𝑗 ; 𝐼𝑖𝑇 , �̃�) = 𝜆(𝐼𝑖𝑇) × 𝐸𝐶

[
𝑠 𝑗 |𝐶(𝒘 , 𝑤(−𝑗); 𝐼𝑖𝑇 , �̃�)

]
𝑤−𝑗 are wages posted by other employers. Since (−𝑗) includes the incumbent

employer 𝑗(𝑖 , 𝑇−1) that has private information about this worker,𝑤−𝑗 and therefore

𝑠
(0)
𝑗

in (7.8) varies by private information �̃�.

Taking the derivative of (7.8) over the wage 𝒘 posted by 𝑗:

𝐸
�̃� |𝐼𝑖𝑇


𝜕𝑠(0)

𝑗

𝜕𝑤
×

(
𝐸𝛼 |𝐼𝑖𝑇∪�̃�[𝑌𝑗(𝛼, 𝜏

(0)
𝑗
)] − 𝑤

)
− 𝑠(0)

𝑗
(𝒘 , 𝑤−𝑗 ; 𝐼𝑖𝑇 , �̃�)

 = 0 (7.9)

Conditional on the not-yet-known �̃�:

𝜕𝑠(0)
𝑗
(𝒘 , 𝑤−𝑗 ; 𝐼𝑖𝑇 , �̃�)

𝜕𝑤
= 𝜆(𝐼𝑖𝑇) ×

©«
𝜕𝑠 𝑗 |𝐺

𝜕𝑤︸︷︷︸
(𝑒)

×𝐸𝐶[𝑠𝐺 |𝐶] + 𝑠 𝑗 |𝐺 ×
𝜕𝐸𝐶[𝑠𝐺 |𝐶]

𝜕𝑤︸      ︷︷      ︸
( 𝑓 )

ª®®®®®¬
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(𝑒) =
𝑏/𝜌𝐺
𝑤

× 𝑠 𝑗 |𝐺 × (1 − 𝑠 𝑗 |𝐺)

( 𝑓 ) = 𝑏

𝑤
× 𝑠 𝑗 |𝐺 × 𝐸𝐶[𝑠𝐺 |𝐶 × (1 − 𝑠𝐺 |𝐶)]

Merging the equations above yields the labor supply elasticity w.r.t. wage for new

workers:

𝜉(0)
𝑖𝑇 𝑗

(̃𝐼) B
𝜕𝑙𝑛(𝑠(0)

𝑗
(𝒘 , 𝑤−𝑗 ; 𝐼𝑖𝑇 , �̃�))
𝜕𝑙𝑛(𝑤) =

𝑏

𝜌𝐺
× 𝐸𝐶

[
𝑠𝐺 |𝐶

𝐸𝐶[𝑠𝐺 |𝐶]
×

(
1 − 𝜌𝐺 𝑠 𝑗 |𝐺 𝑠𝐺 |𝐶 − (1 − 𝜌𝐺)𝑠 𝑗 |𝐺

) ]
(7.10)

where �̃� matters for the wages set by the incumbent employer of this outside worker

and thus each choice probability in (7.10). In contrast with the elasticity 𝜉(1)
𝑖𝑇 𝑗

of an

incumbent worker (7.5), 𝜆(𝐼𝑖𝑇), the probability getting on the market, no longer

matters for the elasticity to a new employer 𝑗.56 In addition, 𝑗 is uncertain about

�̃� and the elasticity is specific to �̃� conditional on public information 𝐼𝑖𝑇 . Plugging

the above into FOC (7.9), the optimal wage for outside employee 𝑖 can be written

as:57

𝑤
(0)
𝑖𝑇 𝑗

=
©«1 + 𝐸

�̃� |𝐼𝑖𝑇


𝑠
(0)
𝑗

𝐸
�̃� |𝐼𝑖𝑇 [𝑠

(0)
𝑗
]
× 𝜉(0)

𝑖𝑇 𝑗
(̃𝐼)

ª®¬
−1

(7.11)

× 𝐸
�̃� |𝐼𝑖𝑇


𝑠
(0)
𝑗

𝐸
�̃� |𝐼𝑖𝑇 [𝑠

(0)
𝑗
]
× 𝜉(0)

𝑖𝑇 𝑗
(̃𝐼) × 𝐸𝛼 |𝐼𝑖𝑇∪�̃�[𝑌𝑗(𝛼, 𝜏)]


Taking the derivative of (7.8) over task allocation 𝜏,

𝜕𝐸
�̃� |𝐼𝑖𝑇 [𝑠

(0)
𝑗

× 𝐸𝛼 |𝐼𝑖𝑇∪�̃�[𝑌𝑗(𝛼, 𝜏)]]
𝜕𝜏

≥ 0 (7.12)

→𝐸
�̃� |𝐼𝑖𝑇 [𝑠

(0)
𝑗

× (−1 + 𝐸𝛼 |𝐼∪�̃�[𝜙 𝑗(11)𝑝𝛼 �̃�𝛼 + 𝜙 𝑗(10)𝑝𝛼(1 − �̃�𝛼)] − 𝜁𝜏)] ≥ 0

→𝝉(0)
𝑖𝑇 𝑗

= 𝐸
�̃� |𝐼𝑖𝑇


𝑠
(0)
𝑗

𝐸
�̃� |𝐼𝑖𝑇 [𝑠

(0)
𝑗
]
× 𝜏∗𝑇 𝑗(𝐼𝑖𝑇 , �̃�)


56New workers are predicted to be paid a higher wage than equally productive incumbent work-

ers, due to their more elastic labor supply when 𝜆 < 1. In this paper I do not have data on wages

and thus do not test this prediction.

57At information state (𝐼 , �̃�), 𝑠(0)
𝑗

= 𝑠
(0)
𝑗
(𝑤(0)

𝑖𝑇 𝑗
, 𝑤−𝑗 ; 𝐼 , �̃�), which equals to 𝑠

(0)
𝑗
(𝐼 , �̃�) in equilibrium,

evaluated at 𝑤
(0)
𝑖𝑇 𝑗

= 𝑤
(0)
𝑇 𝑗
(𝐼) and 𝑤−𝑗(𝐼 , �̃�) (see Definition 1)
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that is, the task allocation for an outside worker is a weighted average of what firm 𝑗

would have set if �̃� is known. The weight on �̃� equals the likelihood of �̃� conditional

on public 𝐼𝑖𝑇 and the case that the worker moves to 𝑗.

Middle Periods 𝒕 = 2, ..., (𝑻 − 1)

𝑉𝑡 𝑗

( ⋃
worker 𝑖

𝐼𝑖𝑡 𝑗

)
=

∑
𝑖: 𝑗(𝑖 ,𝑡−1)=𝑗

𝑣
(1)
𝑡 𝑗
(𝐼𝑖𝑡 ∪ �̃�𝑖𝑡)︸                     ︷︷                     ︸

Incumbent

+
∑

𝑖: 𝑗(𝑖 ,𝑡−1)≠𝑗
𝑣
(0)
𝑡 𝑗
(𝐼𝑖𝑡)︸               ︷︷               ︸

Workers Outside

(7.13)

Employer 𝑗 solves the following for incumbent workers:

𝑣
(1)
𝑡 𝑗
(𝐼𝑖𝑡 , �̃�𝑖𝑡) = 𝑚𝑎𝑥𝒘 ,𝝉 𝑠

(1)
𝑗
(𝒘 , 𝑤−𝑗 ; 𝐼𝑖𝑡)︸             ︷︷             ︸

expected labor supply

×
(
𝐸𝛼 |𝐼𝑖𝑡∪�̃�𝑖𝑡 [𝑌𝑗(𝛼, 𝝉)] + 𝛽 𝐸𝑫[𝑣(1)(𝑡+1)𝑗(𝐼

′, �̃�′) | 𝝉] −𝒘
)

︸                                                          ︷︷                                                          ︸
MRPL at t & discounted continuation value, net wage

(7.14)

Employers now take into the expected continuation value from stayers at (𝑡 + 1):

𝐸𝑫[𝑣(1)(𝑡+1)𝑗(𝐼
′, �̃�′) | 𝝉] =

∑
𝑫

𝑃𝑟(𝑫 |𝐼𝑖𝑡 ∪ �̃�𝑖𝑡 , 𝜏) × 𝑣(1)(𝑡+1)𝑗(𝐼
′(𝑫), �̃�′(𝑫)) (7.15)

in which 𝑫 = (𝐷𝑖𝑡(11), 𝐷𝑖𝑡(10), 𝐷𝑖𝑡(01))
𝑃𝑟(𝑫 |𝐼𝑖𝑡 ∪ �̃�𝑖𝑡 , 𝜏) =

∑
𝛼

𝑃𝑟(𝛼 |𝐼𝑖𝑡 ∪ �̃�𝑖𝑡) × 𝑃𝑟(𝑫 |𝛼, 𝜏) as in Table 1

𝐼′(𝑫) =𝐼𝑖𝑡 ∪ �̃�𝑖𝑡 ∪ {𝐷𝑖𝑡(11) + 𝐷𝑖𝑡(10)}
�̃�′(𝑫) ={𝑫}

The optimal wages at 𝑡 < 𝑇, as shown in (2.11) and repeated below, can be

derived the same way as wages at 𝑡 = 𝑇:

𝒘(1)
𝑖𝑡 𝑗

=

(
𝐸𝛼 |𝐼𝑖𝑡∪�̃�𝑖𝑡 [𝑌𝑗(𝛼, 𝜏)] + 𝛽 𝐸[𝑣(1)(𝑡+1)𝑗(𝐼

′, �̃�′) | 𝝉(1)
𝑖𝑡 𝑗
]
)
× 𝜉(1)

𝑖𝑡 𝑗
×

(
1 + 𝜉(1)

𝑖𝑡 𝑗

)−1︸                 ︷︷                 ︸
markdown

(7.16)

The firm-specific labor supply elasticity of an incumbent worker or a new

worker can be written the same as equations (7.5) (7.10), respectively. The difference

in wages at 𝑡 < 𝑇 from wages at 𝑡 = 𝑇 is that employers also share some of the
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expected continuation value with the worker (marked down by the inverse of

labor supply elasticity). In other words, the dynamic monopsonistic wages in

this framework are front-loaded. Once a worker has entered the firm, wages for

incumbent employees are lower unless they keep re-entering the labor market

(𝜆 → 1). The gap between an incumbent and equally productive new worker may

be interpreted as a signing bonus or stock options contracted upon entry.

Optimal task allocations now depend on the changes to continuation value

given innovation outputs:

𝝉(1)
𝑖𝑡 𝑗

=𝑚𝑎𝑥{0, 𝑚𝑖𝑛{1, 𝝉∗𝑡 𝑗(𝐼𝑖𝑡 , �̃�𝑖𝑡)}} (7.17)

𝝉∗𝑡 𝑗(𝐼 , �̃�) B
1

𝜁
× 𝐸𝛼 |𝐼∪�̃�

−1 +
∑

𝑘∈{11,10,01}
𝜙 𝑗(𝑘) ×

𝜕𝐸[𝐷𝑖𝑡(𝑘)|𝛼, 𝜏]
𝜕𝜏

︸                                                         ︷︷                                                         ︸
return to innovation today

+
𝛽/�̄� 𝑗

𝜁
×

𝜕𝐸[𝑣(1)(𝑡+1)𝑗(𝐼
′, �̃�′)|𝜏]

𝜕𝜏︸                  ︷︷                  ︸
change in value from stayer

(7.18)

in which the dynamic return to assigning more innovation task today:

𝜕𝐸[𝑣(1)(𝑡+1)𝑗(𝐼
′, �̃�′)|𝜏]

𝜕𝜏
(7.19)

=
∑
𝑫

𝜕𝑃𝑟(𝑫 |𝐼𝑖𝑡 ∪ �̃�𝑖𝑡 , 𝜏)
𝜕𝜏

× 𝑣(1)(𝑡+1)𝑗(𝐼
′(𝑫), �̃�′(𝑫))

=
∑
𝛼

𝑃𝑟(𝛼 |𝐼𝑖𝑡 ∪ �̃�𝑖𝑡) ×
∑

𝑘∈{11,10}

𝜕𝑃𝑟(𝐷𝑖𝑡(𝑘) = 1|𝛼, 𝜏)
𝜕𝜏︸                    ︷︷                    ︸

see Table 1

×
(
𝐸[𝑣(1)(𝑡+1)𝑗 |𝛼, Paper] − 𝐸[𝑣(1)(𝑡+1)𝑗 |𝛼,No Paper]

)
︸                                                      ︷︷                                                      ︸

(∗)

where (∗) is the change in the firm’s continuation value when employee 𝑖 produces

a paper (𝐷𝑖𝑡(11) + 𝐷𝑖𝑡(10) = 1) versus not, expected over other patenting activity,

𝐷𝑖𝑡(01), which does not vary by 𝜏 (Table 1).

The optimal contracts for a new worker maximize (2.14). The derivation is

similar to that of 𝑡 = 𝑇, and the solutions are presented in Section 2.2.3.

In summary, we have derived the optimal wages as expressed in (2.11,2.15),

and the optimal task allocations in (2.12,??). In equilibrium, employers set wages

and allocate workers to innovation tasks, conditional on information about workers

and taking as given the wages set by other employers. The expected labor supply

from incumbent and new workers is determined by the wages set by potential em-

ployers.
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First Period 𝒕 = 1

New PhD’s are on the market at 𝑡 = 1 and observe the contracts posted by

all employers. Firms simultaneously solve the following conditional on common

initial information 𝐼𝑖1:

𝑉1𝑗

(⋃
𝐼𝑖1

)
=

∑
𝑖

𝑣1𝑗(𝐼𝑖1) (7.20)

𝑣1𝑗(𝐼𝑖1) = 𝑚𝑎𝑥𝒘 ,𝝉 𝑠 𝑗(𝒘 , 𝑤−𝑗 ; 𝐼𝑖1)︸           ︷︷           ︸
labor supply

×
©«
𝐸𝛼 |𝐼𝑖1[𝑌𝑗(𝛼, 𝝉)]︸           ︷︷           ︸

MRPL at 𝑡=1

+ 𝛽 × 𝐸[𝑣(1)
2𝑗
(𝐼′, �̃�′)|𝝉]︸                  ︷︷                  ︸

continuation value

−𝒘
ª®®®®¬

The FOC for initial wage:

𝜕𝑠 𝑗(𝒘 , 𝑤−𝑗 ; 𝐼𝑖1)
𝜕𝑤

×
(
𝐸𝛼 |𝐼𝑖1[𝑌𝑗(𝛼, 𝝉)] − 𝑤

)
− 𝑠 𝑗(𝒘 , 𝑤−𝑗 ; 𝐼𝑖1) = 0

where 𝑠 𝑗(𝒘 , 𝑤−𝑗 ; 𝐼𝑖1) = 𝑠 𝑗 |𝐺 × 𝑠𝐺

The elasticity of labor supply to firm 𝑗 ∈ 𝐺 at 𝑡 = 1 equals:

𝜉𝑖1𝑗 =
𝑏

𝜌𝐺
×

(
1 − (1 − 𝜌𝐺)𝑠 𝑗 |𝐺 − 𝜌𝐺𝑠 𝑗

)
(7.21)

The optimal contract can then be written as:

𝑤𝑖1𝑗 =
(
𝐸𝛼 |𝐼𝑖1[𝑌𝑗(𝛼, 𝝉)] + 𝛽 𝐸[𝑣(1)

2𝑗
(𝐼′, �̃�′)|𝜏𝑖1𝑗]

)
× 𝜉𝑖1𝑗 ×

(
1 + 𝜉𝑖1𝑗

)−1

(7.22)

𝜏𝑖1𝑗 = 𝑚𝑎𝑥{0, 𝑚𝑖𝑛{1, 1

𝜁
𝐸𝛼 |𝐼𝑖1[𝑝𝛼 �̃�𝛼𝜙 𝑗(11) + 𝑝𝛼(1 − �̃�𝛼)𝜙 𝑗(10) − 1 + 𝛽

�̄� 𝑗

×
𝜕𝐸[𝑣(1)

2𝑗
(𝐼)|𝜏]

𝜕𝜏
]}}

where wage markdown equals the inverse of labor supply elasticity in (7.21), and

the continuation value changes in 𝜏 as in (7.19).

The backward induction from 𝑡 = 𝑇 to 𝑡 = 1 is complete.

Disclaimer: I am revising Appendix A2-A4 as of 01/07/2024.

A2. Proof of Propositions 1 and 2

Proof of Proposition 1 - Unique Equilibrium under Monopsonistic Competition
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Proposition 1 (Existence and Uniqueness of MPBNE) In an imperfectly competitive
labor market with 𝑏 ∈ (0,∞), 𝜌𝐺 ∈ (0, 1), and 𝜆𝐺(·) > 0, the equilibrium wages 𝒘 in
Definition 1 are unique up to a non-zero scaling factor, and they result in a unique allocation
of workers between firms at each possible information state (𝐼 , �̃�):

𝒔𝑡 𝑗(𝐼 , �̃�) =


𝒔1𝑗 (𝒘1(𝐼)) 𝑡 = 1

𝒔(1)
𝑡 𝑗

(
𝒘𝑡 𝑗(𝐼 , �̃�), 𝒘𝑡(−𝑗)(𝐼)

)
𝑡 > 1, 𝑗 = 𝑗(𝑖 , 𝑡 − 1) , as in equation (??)

𝒔(0)
𝑡 𝑗

(
𝒘𝑡 𝑗(𝐼), 𝒘𝑡(−𝑗)(𝐼 , �̃�)

)
𝑡 > 1, 𝑗 ≠ 𝑗(𝑖 , 𝑡 − 1) , as in equation (??)

In an imperfectly competitive labor market (
𝑏
𝜌 < ∞), firms set profit-maximizing

wages conditional on the information they have about workers and taking as given

the wages set by other firms. Assuming that firms are productive in routine ac-

tivity ∀𝑗 : 𝑓𝑗 > 0 and there is a positive probability incumbent employees get on

the market and look for new jobs ∀𝐺∀𝜋 : 𝜆𝐺(𝜋) > 0, employers would set positive

wages for all workers, as derived in the backward induction in A1. There exists an

equilibrium with wages:

𝒘∗
𝑖𝑡 𝑗 =

{
𝒘(1)
𝑡 𝑗
(𝐼𝑖𝑡 ∪ { �̃�𝑖(𝑡−1)}) 𝑗 = 𝑗(𝑖 , 𝑡 − 1) , as in equations (2.11, 7.6)

𝒘(0)
𝑡 𝑗
(𝐼𝑖𝑡) 𝑗 ≠ 𝑗(𝑖 , 𝑡 − 1) , as in equations (2.15, 7.11)

In equilibrium, the probability of a worker on the market choosing employer

𝑗, as expressed in (7.1), is determined by the wages set by all potential employers:58

𝒑∗
𝑖 𝑗 |𝐶 =

𝑒𝑥𝑝
(
𝜂𝐺(𝑗)(𝐼𝑖𝑡) + 𝜌𝐺(𝑗)𝑊

∗
𝑖𝐺(𝑗)

)
∑
𝐺∈𝐶 𝑒𝑥𝑝

(
𝜂𝐺(𝐼𝑖𝑡) + 𝜌𝐺𝑊 ∗

𝑖𝐺

)︸                               ︷︷                               ︸
choose nest 𝐺(𝑗) in choice set 𝐶

×
𝑒𝑥𝑝

(
𝑏/𝜌𝐺(𝑗) 𝑙𝑛(𝑤∗

𝑖𝑡 𝑗
)
)

𝑒𝑥𝑝(𝑊 ∗
𝑖𝐺(𝑗))︸                      ︷︷                      ︸

choose j within nest 𝐺(𝑗)

(7.23)

where the inclusive value for nest 𝐺 equals𝑊 ∗
𝑖𝐺
B 𝑙𝑛

(∑
𝑗∈𝐺 𝑒𝑥𝑝(𝑏/𝜌𝐺 𝑙𝑛(𝑤∗

𝑖𝑡 𝑗
)
)
.

To show that the equilibrium allocation is unique (log wages are unique up

to a constant), it would be sufficient to show 𝑀 : R𝐾 → R𝐾
defined as follows is a

58The equilibrium allocation of workers across firms can be viewed as a fixed point of the function

𝑝 ◦ 𝑤: 𝑝(𝑤(𝒑)) = 𝒑.
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contraction mapping with modulus less than 1:59

∀𝑡 ∀𝑗 > 1 : 𝑀(𝝎𝑡 𝑗) = 𝝎𝑡 𝑗 + 𝑝𝑡 𝑗 − 𝑝𝑡 𝑗(𝝎𝑡) (7.24)

𝜔𝑡 𝑗 B
𝑏

𝜌𝐺(𝑗)
𝑙𝑛(

𝑤𝑡 𝑗

𝑤1𝑗
) (7.25)

where 𝜔𝑡 𝑗 are log wages multiplied by
𝑏
𝜌 ∈ (0,∞), relative to that of 𝑗 = 1, and 𝑝𝑡 𝑗(·)

represents the labor supply given wages, which are different for incumbent (??)

and new workers (??).

Following Berry, Levinsohn, and Pakes (1995; henceforth BLP), I show that

𝑀 satisfies the sufficient conditions for a contraction that are laid out in Theorem

1 of BLP. I focus on the proof for the incumbent workers ∈ 𝑗, with labor supply

(??) at 𝑡 > 1. The proof for new workers is similar. Given any positive wages, the

derivatives satisfy:

𝜕𝑀𝑡 𝑗

𝜕𝜔𝑡 𝑗
= 1 − 1

𝑝
(1)
𝑡 𝑗
(𝜔𝑡)

𝜕𝑝(1)
𝑡 𝑗

𝜕𝜔𝑡 𝑗
= 1 −

𝜉(1)
𝑡 𝑗

𝑏/𝜌𝐺(𝑗)︸  ︷︷  ︸
see (7.5)

≥ 0 (7.26)

𝜕𝑀𝑡 𝑗

𝜕𝜔𝑡𝑞
= − 1

𝑝
(1)
𝑡 𝑗
(𝜔𝑡)

×
𝜕𝑝(1)

𝑡 𝑗

𝜕𝜔𝑡𝑞︸︷︷︸
≤0

≥ 0

The cross-derivative depends on if the outside firm 𝑞 ∈ 𝐺(𝑗):

𝑞 ∈ 𝐺(𝑗) :

𝜕𝑝(1)
𝑡 𝑗

𝜕𝜔𝑡𝑞
= 𝜆𝐺(𝑗) ×

(
𝑝 𝑗 |𝐺(𝑗) × 𝑝𝑞 |𝐺(𝑗)

)
× 𝐸𝐶[−𝑝𝐺(𝑗)|𝐶 + 𝜌𝐺(𝑗) × 𝑝𝐺(𝑗)|𝐶(1 − 𝑝𝐺 |𝐶)]

(7.27)

𝑞 ∉ 𝐺(𝑗) :

𝜕𝑝(1)
𝑡 𝑗

𝜕𝜔𝑡𝑞
= −𝜆𝐺(𝑗) ×

(
𝑝 𝑗 |𝐺(𝑗) × 𝑝𝑞 |𝐺(𝑗)

)
× 𝐸𝐶[𝜌𝐺(𝑗) × 𝑝𝐺(𝑗)|𝐶 × 𝑝𝐺(𝑞)|𝐶]

59The dimension 𝐾 = 𝐽 × 𝑇 × |Π|, where 𝐽: number of firms, 𝑇: number of periods, |Π|: number

of beliefs on a grid. Wages 𝑤𝑡 𝑗 are set by employer 𝑗 at period 𝑡 for every possible belief 𝜋 ∈ Π on

the grid.
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The sum of the derivatives in (7.26) for each 𝑗 > 1, at each period 𝑡 > 1:∑
𝑞>1

𝜕𝑀𝑡 𝑗

𝜕𝜔𝑡𝑞
= 1 +

𝜆𝐺(𝑗) × 𝑝 𝑗 |𝐺(𝑗)
𝑝
(1)
𝑡 𝑗

×(𝐸𝐶[−𝑝𝐺(𝑗)|𝐶 × (1 − 𝜌𝐺(𝑗)𝑝 𝑗 |𝐶 − (1 − 𝜌𝐺(𝑗))𝑝 𝑗 |𝐺(𝑗))]

(7.28)

+
∑

𝑞∈𝐺(𝑗)\{1, 𝑗}
𝑝𝑞 |𝐺(𝑗) × 𝐸𝐶[𝑝𝐺(𝑗)|𝐶 (1 − 𝜌𝐺(𝑗) + 𝜌𝐺(𝑗)𝑝𝐺(𝑗)|𝐶)]

+
∑

𝑞∉𝐺(𝑗),𝑞>1

𝑝𝑞 |𝐺(𝑞) × 𝐸𝐶[𝜌𝐺(𝑗) × 𝑝𝐺(𝑗)|𝐶 × 𝑝𝐺(𝑘)|𝐶] )

= 1 +
𝜆𝐺(𝑗) × 𝑝 𝑗 |𝐺(𝑗)

𝑝
(1)
𝑡 𝑗

× 𝐸𝐶[ 𝑝𝐺(𝑗)|𝐶× ( (1 − 𝜌𝐺(𝑗)) × (1 − 1[𝐺(𝑗) ∋ 1]𝑝
1|𝐶)︸                    ︷︷                    ︸

≤1

+𝜌𝐺(𝑗) ×
∑
𝑞>1

𝑝𝑞 |𝐶︸  ︷︷  ︸
<1

−1 ) ]

which satisfies ∑
𝑞>1

𝜕𝑀𝑡 𝑗

𝜕𝜔𝑡𝑞
< 1

Under the assumption that each firm’s routine productivity is positive and bounded,

the wages to workers are also positive and bounded. Therefore, 𝑀 is bounded,

satisfying hypotheses (2)(3) in Theorem 1 of BLP.

By Theorem in BLP, we have that 𝑀 is a contraction mapping of modulus < 1.

There is a unique fixed point such that

∀𝑡 ∀𝑗 > 1 : 𝝎∗
𝑡 𝑗 = 𝝎∗

𝑡 𝑗 + 𝑝𝑡 𝑗 − 𝑝𝑡 𝑗(𝝎
∗
𝑡) (7.29)

The fixed point 𝝎∗
can be translated to equilibrium wages that are unique up

to (nonzero) scaling factor. The equilibrium allocation of workers between firms,

as in (7.23) is unique.

□
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Special Case: Symmetric Learning under Perfect Competition
Thus far the labor market has been assumed to be imperfectly competitive

𝑏
𝜌 < ∞.

Suppose that the labor supply is perfectly elastic in each period (
𝑏
𝜌 → ∞ and

𝜆 ≡ 1), and the information is incomplete but symmetric among employers. Once

we make such assumptions, the decision to allocate workers to innovation tasks

is equivalent to the decision to provide general skill training that is transferable

between firms. We get the familiar result in Becker (1964) that workers who are not

credit-constrained bear all costs of training and are paid their full marginal product

of labor.

Proposition 2 (Equilibrium under Public Information & Perfect Competition) If
the labor market is perfectly competitive ( 𝑏𝜌 → ∞, 𝜆 ≡ 1) and information is always sym-
metric, each firm 𝑗 offers a worker with public information 𝐼:

∀𝑡 :𝒘𝑡 𝑗(𝐼) = 𝐸𝛼 |𝐼[𝑌𝑗(𝛼, 𝜏𝑡 𝑗(𝐼))] − 𝜁(𝜏) (7.30)

in which 𝜏𝑡 𝑗(𝐼) = 𝑎𝑟𝑔𝑚𝑎𝑥𝜏∈[0,1] 𝐸𝛼 |𝐼[𝑌𝑗(𝛼, 𝜏𝑡 𝑗(𝐼))] − 𝜁(𝜏)

If the labor market is perfectly competitive but information is asymmetric as

in (2.3), less informed employers face a problem similar to Hendricks and Porter

(1988) and would adopt a mixed strategy to randomize their wage bids (Boozer

1994; ?). Otherwise, there is always adverse selection (Greenwald (1986)). It is

unclear, however, if incumbent employers would allocate workers to innovation

tasks efficiently.

Proof of Proposition 2 - Equilibrium Under Public Information and Perfect Competition

Given
𝑏
𝜌 → ∞ and ∀𝐺 : 𝜆𝐺 ≡ 1, the labor supply elasticity of incumbent and

new workers, as expressed in (7.5) and (7.10) both go to infinity. The labor market

is perfectly competitive given that the labor supply of every worker is perfectly

elastic w.r.t wages.

Plugging 𝜉(1) into the wage for incumbents at 𝑡 = 𝑇, we have 𝑤
(1)
𝑖𝑇 𝑗

(𝜋) =

𝑀𝑃𝑗(𝜋, 𝜏(1)𝑖𝑇 𝑗). Incumbent workers with belief 𝜋 are paid the full marginal revenue

product of labor. Thus, there is no dynamic rent for employers at (𝑇 −1). The wage

in intermediary periods, as shown in (2.11), also equals a worker’s MRPL without

leaving any rent to an employer.

Information is assumed to be symmetric between employers. The expectation

over �̃�, which indicates the quality of a paper (whether it has a matched patent),

can be removed from the wages for new workers as in (2.15). Therefore we have,

𝑤𝑡 𝑗(𝜋) = 𝑀𝑃𝑗(𝜋, 𝜏𝑡 𝑗(𝜋))

for all public belief 𝜋 that a worker is 𝐻-ability.
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Since the continuation value equals zero at all employers, allocating workers to

innovation tasks also becomes a static decision. The solutions in (??,2.12,7.12,7.7,7.22)

can be simplified to:

𝜏𝑡 𝑗(𝜋) = 𝑚𝑎𝑥{0, 𝑚𝑖𝑛{1, 1

𝜁
(𝑔𝑗 × 𝑞(𝜋) − 1)}}

The costs of innovation tasks are fully deducted from workers’ wages (see 2.4). That

is, workers are bearing all costs of innovation. They are not credit constrained as

they earn a positive wage from routine tasks (under Assumption ?? that ∀𝑗 : 𝑀 𝑗 >
0). The choices of innovation tasks would be first best in each period, just like the

choice of general skill training made by workers who are not credit constrained in

Becker (1964). □

A3. Model Predictions

Derivation of Prediction 1: Mobility in Response to Public Information
Given information 𝐼, denote by 𝜋1 = 𝑃𝑟(𝐻 |𝐼 ∪ {1}) the public belief when a worker

has any innovation, and by 𝜋0 = 𝑃𝑟(𝐻 |𝐼 ∪ {0}) the belief otherwise. Assumption 3

implies

𝜋1 > 𝜋0

a) According to (??), a worker who produces a public innovation stays at the

incumbent employer 𝑗 with probability

𝑝
(1)
𝑗
(𝜋1) = 1 − 𝜆𝐺(𝑗)(𝜋1) × (1 − 𝐸𝐶[𝑝 𝑗 |𝐶(𝜋1)]

Conditional on common prior, a worker without any new output has labor

supply:

𝑝
(1)
𝑗
(𝜋0) = 1 − 𝜆𝐺(𝑗)(𝜋0) × (1 − 𝐸𝐶[𝑝 𝑗 |𝐶(𝜋0)]

The difference between which represents the gap in turnover when a worker

produces a new paper:

△𝑝(1)
𝑗

= 𝑝
(1)
𝑗
(𝜋1) − 𝑝(1)𝑗 (𝜋0) =

(
𝜆𝐺(𝑗)(𝜋0) − 𝜆𝐺(𝑗)(𝜋1)

)︸                      ︷︷                      ︸
≤0 under Assumption 2

×
(
1 − 𝑝 𝑗 |𝐺(𝑗)(𝜋0) × 𝐸𝐶[𝑝𝐺 |𝐶(𝜋0)]

)
+ 𝜆𝐺(𝑗)(𝜋1) ×

(
𝑝 𝑗 |𝐺(𝑗)(𝜋1) × 𝐸𝐶[𝑝𝐺 |𝐶(𝜋1)] − 𝑝 𝑗 |𝐺(𝑗)(𝜋0) × 𝐸𝐶[𝑝𝐺 |𝐶(𝜋0)]

)︸                                                                     ︷︷                                                                     ︸
choose j again if on market

Under Assumption 2, 𝜋1 > 𝜋0 → 𝜆(𝜋1) ≥ 𝜆(𝜋0). Unless workers with

belief 𝜋1 are much more likely to choose the incumbent 𝑗 again out of all
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potential employers, the difference above is negative.60 It implies workers

with a new signal are more likely to leave their incumbent employers than

similar coworkers without a signal.

b) Conditional on re-entering the job market, 𝜋1 are more likely to choose firms

that are more productive in innovation (higher 𝑔𝑗′) and can allocate more

innovation tasks, relative to the market average. Let 𝑗′ denote any potential

employer, and Ω(𝜋) denote the option value of a worker with belief 𝜋 on

market

𝑝 𝑗′(𝜋1) =
𝑒𝑥𝑝(𝑏 × 𝑙𝑛(𝑤 𝑗′(𝜋1))

𝑒𝑥𝑝(Ω(𝜋1))
, 𝑝 𝑗′(𝜋0) =

𝑒𝑥𝑝(𝑏 × 𝑙𝑛(𝑤 𝑗′(𝜋0))
𝑒𝑥𝑝(Ω(𝜋0))

→𝑙𝑛

(
𝑝 𝑗′(𝜋1)
𝑝 𝑗′(𝜋0)

)
= 𝑏 × 𝑙𝑛

(
𝑤 𝑗′(𝜋1)
𝑤 𝑗′(𝜋0)

)
− 𝑙𝑛

(
Ω(𝜋1)
Ω(𝜋0)

)
Under Assumption 3 and the optimal solutions shown in (2.11, 2.15, 7.6, 7.11),

wages are nondecreasing in belief 𝜋, resulting in Ω(𝜋1) ≥ Ω(𝜋0). Moreover,

the wage increase is larger at more productive firms (higher 𝑔𝑗′) that can

allocate more innovation tasks to𝜋1 than other firms on average. In summary,

workers with 𝜋1 are more likely to move into 𝑗′ if the following conditions

hold:

(a) 𝜏𝑗′(𝜋1) > 𝜏𝑗′(𝜋0);
(b) 𝜋1 is more valuable to 𝑗′ than to the market average.

The positive assortative matching affects marginal workers who would not

have spent as much time on innovation task without the positive signal. If

𝜋1,𝜋0 are significantly high, the worker might be able to spend 100% of time

on innovation at any firm, and there is no sorting as in a standard AKM

framework.61

Derivation of Prediction 2: Mobility under Asymmetric Information

60The exception with

(
𝑝 𝑗 |𝐺(𝑗)(𝜋1) × 𝐸𝐶[𝑝𝐺 |𝐶(𝜋1)] − 𝑝 𝑗 |𝐺(𝑗)(𝜋0) × 𝐸𝐶[𝑝𝐺 |𝐶(𝜋0)]

)
>> 0 could happen

at the most productive firms, where wages increases more in 𝜋 than at other employers.

61If the wages are set in a AKM fashion as follows, there is no sorting between high 𝜋 and more

productive firms

∀𝜋 : 𝑙𝑛(𝑤 𝑗(𝜋)) = 𝛼(𝜋) + 𝜙 𝑗 (7.31)

→ Ω(𝜋1)
Ω(𝜋0)

= 𝑒𝑥𝑝(𝑏(𝛼(𝜋1) − 𝛼(𝜋0))) × 1 (7.32)

𝑙𝑛

(
𝑝 𝑗′(𝜋1)
𝑝 𝑗′(𝜋0)

)
= 𝑏 (𝛼(𝜋1) − 𝛼(𝜋0)) − 𝑏 (𝛼(𝜋1) − 𝛼(𝜋0)) = 0 (7.33)
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Consider two workers 𝑖 = 1, 2 from firm 𝑗 with a common public belief 𝜋 at the

beginning of period 𝑡. The incumbent employer observes �̃�
1(𝑡−1) = 1 > �̃�

2(𝑡−1), while

outside employers only observe 𝑦
1(𝑡−1) = 𝑦

2(𝑡−1) = 1.

a) Denote by 𝜋11 the private belief about worker 1, and 𝜋10 the private belief

about worker 2. Based on the labor supply in (??, ??), at the beginning of 𝑡 the

difference in the probability a worker stays with the incumbent employer 𝑗 :

𝜋11 > 𝜋10 → 𝑝
(1)
𝑡 𝑗
(𝜋11,𝜋) − 𝑝(1)𝑡 𝑗 (𝜋10,𝜋) = 𝜆𝐺(𝑗)(𝜋)︸   ︷︷   ︸

common public belief

×
(
𝑝𝑡 𝑗(𝜋11,𝜋) − 𝑝𝑡 𝑗(𝜋10,𝜋)

)︸                           ︷︷                           ︸
≥0

> 0

(7.34)

Given the same public belief 𝜋, the two workers are equally likely to get on

the market and search for new jobs. The incumbent employer, however, sets

a higher wage for the first worker with outputs (1, 1) and the second worker

with outputs (1, 0), as 𝜋11 > 𝜋10, resulting in 𝑝𝑡 𝑗(𝜋11,𝜋) > 𝑝𝑡 𝑗(𝜋10,𝜋).

b) Given assumptions on the information structure (??, ??), �̃�
1(𝑡−1) > �̃�

2(𝑡−1) are

revealed by (𝑡+1). As the market receives more positive signals about worker

1 than 2, Prediction 1 applies and we have the (1, 1) worker more likely to

move to a new firm and more productive one than the (1, 0) worker.

A4. Model Extension - Forward-looking Workers

So far we have assumed workers consider the utility from wage only, which

equals the net present value of a worker-firm match, marked down by the inverse

of labor supply elasticity (see 7.5, 7.10). In a more general framework, workers can

be forward-looking and take into account their option value in the labor market

next period if they enter a firm now. Conditional on wages today, working for a

more innovative firm would be more appealing to a high-ability individual who can

improve the future market belief about her by producing more innovation today.

For a worker 𝑖 with market belief 𝜋 in period 𝑡, conditional on her choice of

employer 𝑗(𝑖 , 𝑡) there are three potential option values she can reach next period:

1. Ω𝑖(𝑡+1)(𝜋(1, 1)) if she produces (𝑦𝑖𝑡 , �̃�𝑖𝑡) = (1, 1)

2. Ω𝑖(𝑡+1)(𝜋(1, 0)) if she produces (𝑦𝑖𝑡 , �̃�𝑖𝑡) = (1, 0)

3. Ω𝑖(𝑡+1)(𝜋(1, 0)) if she produces (𝑦𝑖𝑡 , �̃�𝑖𝑡) = (0, 0)
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We can write her utility of choosing firm 𝑗 at 𝑡 given a contract (𝑤, 𝜏) as:

𝑢𝑖𝑡 𝑗(𝑤, 𝜏;𝜋) = 𝑏 × 𝑙𝑛(𝑤) + 𝛽𝑖 × 𝐸(𝑦,�̃�)[Ω𝑖(𝑡+1)(𝜋(𝑦, �̃�) | 𝜏] + 𝜖𝑖 𝑗𝑡

= 𝑏 × 𝑙𝑛(𝑤) + 𝛽𝑖 × 𝜏 × (𝜋ℎ̃ℎ + (1 − 𝜋)̃𝑙𝑙) ×Ω𝑖(𝑡+1)(𝜋(1, 1))
+ 𝛽𝑖 × 𝜏 × (𝜋(1 − ℎ̃)ℎ + (1 − 𝜋)(1 − �̃�)𝑙) ×Ω𝑖(𝑡+1)(𝜋(1, 0))
+ 𝛽𝑖 × (1 − 𝜏 × (𝜋ℎ + (1 − 𝜋)𝑙) ×Ω𝑖(𝑡+1)(𝜋(0, 0)) + 𝜖𝑖 𝑗𝑡

(7.35)

where 𝛽𝑖 ∈ [0, 1] is the discount factor of workers. Benchmark model assumes

𝛽𝑖 = 0. 𝜖𝑖 𝑗𝑡 are idiosyncratic preferences as before. For simplicity, assume 𝜖
iid∼

𝐺𝑢𝑚𝑏𝑒𝑙(0, 1) as in a standard logit model without nested structure.

If belief updating conditional on the innovation outputs are independent of

the origin (i.e., 𝑃𝑟(𝐻 |(𝑦, �̃�), 𝑗) ≡ 𝑃𝑟(𝐻 |(𝑦, �̃�))), then we have:

𝑢𝑖𝑡 𝑗(𝑤, 𝜏;𝜋) = 𝑏 × 𝑙𝑛(𝑤) + 𝛾(𝜋) × 𝜏 + 𝜖𝑖 𝑗𝑡

where 𝛾(𝜋) =𝛽𝑖 × (𝜋ℎ̃ℎ + (1 − 𝜋)̃𝑙𝑙) ×
(
Ω𝑖(𝑡+1)(𝜋(1, 1)) −Ω𝑖(𝑡+1)(𝜋(0, 0))

)
+ 𝛽𝑖(𝜋(1 − ℎ̃)ℎ + (1 − 𝜋)(1 − �̃�)𝑙) ×

(
Ω𝑖(𝑡+1)(𝜋(1, 0)) −Ω𝑖(𝑡+1)(𝜋(0, 0))

)
(7.36)

in which the option value a worker takes into account is reduced to a preference for

the allocation to innovation task 𝜏. The preference depends on the current market

belief about her only, under the assumption that the belief updating is identical

across firms, conditional on 𝜏.

The probability of a new worker choosing firm 𝑗 in equilibrium, conditional

on contract (𝑤, 𝜏) becomes:

𝑝 𝑗(𝑤, 𝜏;𝜋) =
𝑒𝑥𝑝(𝑏 × 𝑙𝑛(𝑤) + 𝛾(𝜋) × 𝜏)∑
𝑗′ 𝑒𝑥𝑝(𝑏 × 𝑙𝑛(𝑤 𝑗′) + 𝛾(𝜋) × 𝜏𝑗′)

(7.37)

And the optimal task allocation chosen by 𝑗 solves:

𝛾(𝜋)
𝑢′(𝑤) +

𝜕

𝜕𝜏
(𝑀𝑃𝑗(𝜋) − 𝑤 + 𝛽𝐸[𝑣𝑖(𝑡+1)𝑗 |𝜏,𝜋]) = 0 (7.38)

where the first part is a ratio of the marginal utility of 𝜏 vs. wage 𝑤, and the

second part is the marginal return to spending more time on innovation as in the

benchmark model. The benchmark model assumes 𝛽𝑖 = 0, which implies 𝛾(𝜋) ≡ 0,

and we are back to the first-order conditions shown in (7.7), for example.

When 𝛾(𝜋) > 0, a worker prefers to spend more time on innovation as it

improves her option value in the labor market next period. Equation (7.36) shows
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that 𝛾 is non-decreasing in 𝜋, which suggests workers who are more likely to have

high-ability further sort themselves into firms allocating more innovation tasks.

To summarize, allowing for forward-looking workers generates additional

predictions:

1. Workers with higher market belief 𝜋 are more likely to choose firms more

productive in innovation, all else equal.

2. When 𝛾 > 0, firms can set a lower wage for higher-𝜋 workers than in the

benchmark where 𝛾 = 0.

These predictions are related to the findings in Stern (2004) that scientists would

accept a lower wage to do science. But these results are less relevant for the tradeoff

between learning and retention faced by firms I focus on in this paper. 𝜏 here

represents an amenity that a firm can provide. We will study workers’ selection

into research jobs in future work.

The main testable predictions on job mobility continue to hold in this model.
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B. Data

Appendix Table B2 displays the number of dissertations by year. For school×year

cells with particularly low or missing data on ProQuest, I collected about 15,000

more Ph.D. profiles from school-specific sources, such as department websites

or dissertation repositories. For example, the number of new dissertations from

Carnegie Mellon University dropped from 100 to 30 in 2014. I then collected ad-

ditional dissertations from its own open-access repository KiltHub. See a detailed

breakdown of dissertations on ProQuest versus school-specific sources in Appendix

Table B3. The total number of Ph.D. graduates in the sample by year, which stays

around 3,000-3,300 per year from the top 60 schools since 2006 (Appendix Figure

B4).

B1. LinkedIn Profiles

With the Recruiter Lite account, LinkedIn allowed me to view public profiles

within my third degree of connections. To deal with this limitation, I actively

connected with a random sample of Ph.D. graduates before the web scraping

for each school. I connected with individuals who published at CS conferences,

or research scientists at various companies. If an individual is on LinkedIn but

falls outside my 3rd-degree connections, the search result would indicate “Out

of Network”. There were about 1,800 out-of-network profiles in total, out of fifty

thousand queries that returned at least one profile on LinkedIn. I manually checked

a random sample of out-of-network profiles and found that most of them had less

than 100 connections on LinkedIn.

B2. Publications Data

The main data source of research papers is Scopus, an abstract and citation

databases of peer-reviewed literature launced by Elsevier in 2004. For each confer-

ence/journal × year, a query is submitted via Scopus Search API, and it returns a

list of papers with information such asauthor(s), title, abstract, ISSN, DOI, number

of citations, volume, issue, and publication date.

Scopus also provides affiliations IDs at paper × author level. Another query

is submitted for each affiliation ID via the Affiliation Search API, and returns

the corresponding institution’s name and location. To maximize matching with

an author’s employment history, I used the same script that cleans the names of

employers on LinkedIn profiles to harmonize the affiliation names from Scopus.

We consider a paper by author 𝑖 affiliated to 𝑗 as her on-the-job research if:

1. 𝑗 can be matched with an employer of 𝑖 on her LinkedIn profile;

2. Author 𝑖 is employed by 𝑗 at the time of publication.
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If a paper has multiple authors, I flag the paper if the majority of coauthors

come from 𝑖’s Ph.D. institution, which is likely to indicate a publication of her

dissertation rather, especially if it happens within the first year after PhD. We

also flag papers where coworkers come from a different industry employer, and

remove papers that are matched with a worker’s previous employer rather than

her current one. For example, a person who moves from Yahoo to Microsoft might

put Microsoft as her affiliation at the time of publication, but if her coauthors come

from Yahoo, it is likely to indicate a work done at Yahoo rather than Microsoft.

Typically this kind of papers would declare “This work was done when X was at

...”.

To evaluate paper quality, I collected citations from Scopus, which covers both

journal articles and conference papers. Citations from other conference papers are

particularly important in computer science. Some scientometric studies suggest

Scopus has better coverage of conference proceedings when compared to Web of

Science (e.g., Harzing 2019, Pranckute 2021).

For each paper that is classified as on-the-job research, I recorded the number

of citations by year since publication, as well as authors on works that cite this

paper to exclude self-citations. Papers with a matched patent application receive

more citations over time as shown in Figure 2. The citations on Scopus are mostly

conference papers or journal articles. In future work, I will look at citations between

papers and patents.

B3. Match between Papers and Patent Applications

I collected patent data from the 2022 release of the Patent Examination Re-

search Dataset (PatEx), which contains publicly viewable patent applications from

the Public Patent Application Information Retrieval System (Public PAIR) as of

June 2023.62 For each patent application, I collected the names of inventors, and

related parent/child application within a family, dates of the earliest filing, publi-

cation of the application, and grant date if a patent is eventually granted. We then

merged patent applications with USPTO’s Patent Assignment Dataset to obtain the

assignee of an application, which are typically the employer(s) of inventors.63

Before matching with research papers, I cleaned the names of authors and

62PatEx 2022 “contains detailed information on more than 13 million publicly-viewable provi-

sional and non-provisional patent applications to the USPTO and over 1 million Patent Cooperation

Treaty (PCT) applications. It is based on data that OCE downloaded from the Patent Examina-

tion Data System (PEDS) in June, 2023.”https://www.uspto.gov/ip-policy/economic-research/
research-datasets/patent-examination-research-dataset-public-pair

63Patent Assignment Dataset 2021 contains “detailed information on 9.6 million patent as-

signments and other transactions recorded at the USPTO since 1970 and involving roughly

16.5 million patents and patent applications. It is derived from the recording of patent

transfers by parties with the USPTO.” https://www.uspto.gov/ip-policy/economic-research/
research-datasets/patent-assignment-dataset
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assignees, using the same scripts for cleaning the names of authors and affiliations

from Scopus. To reduce computational burden, I focus on papers with at least one

Ph.D. author for whom I have collected a LinkedIn profile. The matching is done

in two steps:

1. For each (paper, author) pair in year 𝑡, I looked for all (patent app, inventor)

with the inventor = author that are initially filed between years [𝑡 − 3, 𝑡 + 3].
Considering the number of authors/inventors matched at the paper/patent

level, I drop matches if:

• Less than half of the inventors on a patent application are matched, and

less than half of the authors on a paper are matched.

• The number of inventors on a potential matched patent is < 1/3 or > 3

the number of authors on the paper.

2. Merge the matched (paper, patent, author/inventor) from (1) with author

affiliations from Scopus at (paper, author) level, and with assignees at (patent,

assignee) level.

• Keep (paper, author/inventor, patent) matches if the author’s affiliation

is matched with one of the patent assignees.

The matching by authors and affiliations above generate about 439,000 po-

tential matches at (paper, patent, author) level, which span between about 75,000

papers and 84,000 patent applications.

To further enhance match quality, I compare the titles and abstracts of papers

from Scopus, with titles and abstracts for potentially matched patent applications,

which are extracted from Google Patents Public Datasets via BigQuery. We used

OpenAI’s Ada V2 text embedding model to create numerical representations of

paper or patent abstracts.64 Each embedding is a vector of dimension 1,536. The

more similar a patent abstract to a paper’s, the smaller the distance between their

vector embeddings. This measure of paper-patent similarity is available for 85% of

the potential matches.

For each CS paper, I sort the potentially matched patent applications as follows

and select the first one as the best possible match:

1. # matched authors, # matched inventors on a patent in descending order;

2. at least one author affiliation can be matched with patent assignee;

3. prefers patent application filed in 𝑡, the year a paper is published;

4. distance between text embeddings, in ascending order;

64Ada V2 outperforms Google’s BERT and OpenAI’s earlier embedding models (Neelakantan et

al. 2022).
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5. prefers patent applications filed in 𝑡, then 𝑡 − 1, then 𝑡 + 1.
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Figure B1: Publication of Patent Applications that are Matched to CS Papers
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Notes: This figure shows the fraction of patent applications matched to a

CS paper that have been published (blue) or granted (yellow) by month

since the earliest patent filing date. The jump in the share published at 18

months since the initial filing is consistent with the 18-month rule in 35

U.S.C. 122 since the American Inventors Protection Act (AIPA 1999). About

20% of matched patent applications are disclosed later than 18 months. An

audit study suggests that the non-compliance is driven by applicants who

file a non-publication request at the time of the initial filing, as explained

by Exception B of 35 U.S.C. 122 (b) in Table B3. Such applications will be

published when the US patent office makes a final decision about whether

a patent can be issued or the application should be rejected. Looking

at three years since the earliest filing, more than 95% of matched patent

applications have been published.
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Figure B2: Job Postings for Research Scientists

(a) Amazon Science

(b) Google Research

Notes: This figure shows recent postings of research scientist jobs at Ama-

zon and Google. Both ads explicitly indicate a graduate degree in computer

science as a basic qualification for this type of jobs, and list “publication

records” as preferred qualifications.
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Figure B3: CS PhDs in NSF Surveys

(a) New PhDs (Survey of Earned Doctorates)
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Notes: (a) displays the number of new PhDs in the Survey of Earned Doctorates

by NSF. (b) come from the the Survey of Doctoral Recipients, restricted to Ph.D.

recipients in the U.S. with nonmissing employer information between age 30-34.
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Figure B4: Number of PhD Dissertations and Matched LinkedIn Profiles by Grad-

uation Year
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Notes: The blue line (top) shows the number of Ph.D. recipients in Computer

Science or Electrical Engineering identified in ProQuest dissertation database or

various school-specific sources (Appendix Table B2) by graduation year from 1980

to 2021. The yellow line plots the number of Ph.D.s who are matched with a public

LinkedIn profile by full name, Ph.D. institution, year of graduation.
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Figure B5: LinkedIn Platform

Notes: This figure shows the outputs of one query on the LinkedIn Recruiter Lite platform.

The query includes the full name of a CS Ph.D. and keywords about a "Ph.D." degree and

about CS such as "computer science" or "electrical engineering". The search is also restricted

to CMU, where the person receives the Ph.D. degree. This query returns two profiles. The

first profile returned perfectly matches the name and education info, whereas the second

person has a very different name. If the fuzzy partial text match score between the actual

full name and that on a LinkedIn profile falls below 50 (out of 100), the scraper would not

collect that profile.
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Figure B6: ROC Curve for Paper-Patent Matching by Threshold of Embedding

Distance
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Notes: A paper and a patent application are defined as a match if they are produced

by almost the same researchers at the same institution and discuss almost identical

research findings from the same project. This figure shows the ROC curve of

a predictor for paper-patent matches based on the distance between a paper’s

embedding and a patent application’s embedding. A paper-patent is predicted as

a match if the distance falls below a certain threshold. The performance of this

classification model is evaluated on a random sample of 200 paper-patent pairs

that satisfy the other three criteria (see Section 4.3.2). By reading the complete text

of papers and patent applications rather than just titles and abstracts, I manually

labeled the true matches. We then calculated the true positive rates (recall) and

false positive rates of the predictor at each threshold, and selected 0.35 as the

threshold that is relatively closer to the most desirable (0, 1).
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Figure B7: Patents on LinkedIn
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Note 1: This figure shows the time series of the share of workers who listed a patent on

LinkedIn by year, conditional on having a new paper that year. The patents section on a

LinkedIn profile may include either a patent grant or application, and provides the grant

and/or filing date(s). The blue line (left axis) shows the share of workers who have a new

paper in a given year (based on publication records) and list a granted patent the same year

on LinkedIn. The red line (left axis) shows the share of workers who have a new paper

and list a patent application the same year. The gray line (right axis) shows the share of

workers who also have a patent application matched to a new paper, for comparison.

Note 2: Patents (applications) listed on LinkedIn may not correspond to the ones that can be

matched to a paper. This plot, however, suggests workers are much more likely to advertise

their granted patents rather than applications, especially in more recent years when the

applications are yet to be published by USPTO.
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Table B1: Explanatory Power of PhD School + Cohort Fixed Effects

Economics CS/EE

Outcome 𝑅2
Outcome 𝑅2

Ln Citations Pre Tenure 0.275 Ln Citations in 5 Yrs 0.063

Num. Papers Pre Tenure 0.188 Num. Papers in 5 Yrs 0.055

Note: Economist CV data is provided by Sarsons (2017).
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Table B2: Number of Profiles by Year

year i_pro i_add ld ld_out ld_matched

1980 595 140 254 11 185

1981 640 156 241 25 166

1982 639 156 272 23 200

1983 662 191 250 18 178

1984 702 173 285 25 193

1985 772 211 335 38 218

1986 920 208 384 45 238

1987 1002 179 432 26 321

1988 1393 85 559 40 380

1989 1571 68 610 61 399

1990 1873 68 717 50 535

1991 2040 69 832 58 616

1992 2162 88 859 65 643

1993 2179 88 923 61 706

1994 2244 89 981 59 753

1995 2303 91 1066 56 813

1996 2190 99 1097 79 819

1997 2100 92 1043 51 801

1998 2158 91 1116 59 839

1999 2151 85 1099 48 859

2000 2038 92 1104 51 853

2001 1778 97 1064 52 840

2002 1764 88 990 44 795

2003 1924 112 1138 43 922

2004 2194 159 1322 44 1095

2005 2462 152 1645 62 1310

2006 2779 232 1892 65 1516

2007 2900 251 2087 67 1669

2008 2726 201 1967 60 1571

2009 2499 293 1792 42 1429

2010 2508 541 1932 48 1570

2011 2500 575 1965 46 1609

2012 2523 554 2046 31 1653

2013 2426 801 2133 25 1726

2014 2388 940 2215 28 1724

2015 2274 1038 2213 44 1711

2016 2258 853 2084 27 1599

2017 2266 1019 2182 24 1646

2018 2197 939 2086 26 1598

2019 2107 1160 2118 37 1613

2020 2193 1108 2035 43 1561

2021 1971 1071 1823 38 1321
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Table B3: Number of Profiles by School (ProQuest vs. School-specific Dissertation

Database or Websites)

ProQuest Dissertations School-specific Sources

School # Dissertations LinkedIn Profiles Matched # Dissertations LinkedIn Profiles Matched

austin 2028 990 845 1671 762 635

berkeley 3169 1949 1618 836 369 272

caltech 721 435 296 402 184 112

cmu 2357 1537 1259 2332 920 695

cornell 1738 962 685 481 203 125

git 2379 1426 1174 2300 1230 946

maryland 2421 1380 1143 895 233 169

michigan 2520 1403 1082 1052 331 244

mit 3726 2259 1684 769 353 251

nyu 478 272 200 147 58 48

oregon 412 196 144 233 157 76

princeton 1297 818 637 88 44 35

psu 1734 1012 807 181 91 65

purdue 2448 1387 825 202 87 77

rutgers 837 507 377 350 103 64

ucsb 1450 904 758 61 20 15

uiuc 3541 2070 1630 2359 776 451

umass 826 480 336 296 192 131

utah 714 418 296 48 20 12
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Table B4: Patent Laws - Title 35, United States Code

Law Content

35 U.S.C. 102 CONDITIONS FOR PATENTABILITY

(a) NOVELTY; PRIOR ART.- A person shall be entitled to a patent unless—

(A) the claimed invention was patented, described in a printed publi-
cation, ..., or otherwise available to the public before the effective
filing date of the claimed invention

(b) EXCEPTIONS: (1) A disclosure made 1 year or less before the effective
filing date of a claimed invention shall not be prior art to the claimed

invention under subsection (a)(1) if—

(A) the disclosure was made by the inventor or joint inventor or by
another who obtained the subject matter disclosed directly or in-
directly from the inventor or a joint inventor; or

(B) the subject matter disclosed had, before such disclosure, been pub-

licly disclosed by the inventor or a joint inventor or another who

obtained the subject matter disclosed directly or indirectly from

the inventor or a joint inventor.

35 U.S.C. 122 CONFIDENTIAL STATUS OF APPLICATIONS; PUBLICATION OF

PATENT APPLICATIONS

(a) CONFIDENTIALITY.— Except as provided in subsection (b), applica-

tions for patents shall be kept in confidence by the Patent and Trademark

Office and no information concerning the same given without authority

of the applicant or owner unless necessary to carry out the provisions

of an Act of Congress or in such special circumstances as may be deter-

mined by the Director.

(b) PUBLICATION.-

(1) IN GENERAL.— (A) Subject to paragraph (2), each application for

a patent shall be published, ..., promptly after the expiration of

a period of 18 months from the earliest filing date for which a

benefit is sought under this title.

(2) EXCEPTIONS.— (A) (i) no longer pending; (ii) subject to a secrecy

order under section 181 ; (iii) a provisional application filed under

section 111(b); or (iv) an application for a design patent...

(2) EXCEPTIONS.- (B) If an applicant makes a request upon filing, cer-

tifying that the invention disclosed in the application has not and

will not be the subject of an application filed in another country...

Notes: Detailed discussions of title 35 U.S.C. can be found on the USPTO websites: U.S.C.

102 pre-AIA, U.S.C. 102 AIA, U.S.C. 122. Notably, the America Invents Act in 2011 switched

the U.S. patent system from a “first to invent” to a “first to file” system. But the 12-month

grace period in filing a patent application for inventors’ own publications (35 U.S.C. 102),

and the 18-month publication rule (35 U.S.C. 122) have not changed since the American

Inventors Protection Act (AIPA 1999).
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Table B5: Descriptive Statistics: Matched Computer Scientists

Full Sample Balanced sample

Mean SD Mean SD

Gender from Name or Picture
Female 0.118 0.323 0.123 0.329

Male 0.725 0.446 0.708 0.455

Education
Year of Ph.D. 2007 9.853 2011 3.689

Ph.D. in CS (∋ EECS) 0.531 0.499 0.522 0.500

Ph.D. in EE 0.469 0.499 0.478 0.500

If bachelor information is available:

Bachelor in the U.S. 0.446 0.497 0.386 0.487

Bachelor from Top 60 CS in the U.S. 0.288 0.453 0.249 0.432

Research Outputs Post Ph.D.
Num. Papers 2.506 9.452 2.491 8.767

Num. Paper-Patent Matches 0.219 1.444 0.231 1.413

Num. Patent Applications Not Matched to a Paper 1.672 3.142 1.375 2.275

Any Paper 0.282 0.450 0.297 0.457

Any Paper-Patent Match 0.067 0.250 0.074 0.261

Any Patent Application Not Matched to a Paper 0.426 0.494 0.448 0.497

Employment Post Ph.D.
Num. Yrs with Full-time Employment 13.498 6.910 11.530 3.692

Num. Tenure-track Employers 0.300 0.617 0.259 0.574

Num. Postdoc Employers 0.154 0.398 0.205 0.454

Num. Top Firms 0.295 0.541 0.373 0.598

Num. Nontop Firms 1.866 1.664 1.612 1.310

Ever on the Tenure track 0.231 0.421 0.198 0.398

Ever a Postdoc 0.141 0.348 0.185 0.388

Ever at Top Firms 0.256 0.436 0.316 0.465

Ever at Nontop Firms 0.795 0.404 0.800 0.400

Observations 40,219 18,860

Notes: This table summarizes the sample of matched Ph.D.’s with non-missing

full-time employment records on LinkedIn (Section 3.2). The full sample (first two

columns) includes matched CS/EE Ph.D.’s from top 60 CS schools who graduated

between 1980 and 2021, and have at least one full-time job with one employer self-

reported on LinkedIn. We use the full sample throughout Section 4. The balanced

(sub)sample restricts to those who graduated between 2005 and 2018 and have 5

years of non-missing job history since Ph.D. on LinkedIn. We use this subsample

to estimate the 5-period structural model in Section 5.

• Gender is classified based on either first name or profile picture (available for

78% of the sample). 15% remains missing, due to either a missing picture or gender-

neutral or foreign names that cannot be classified based on the U.S. Census.

• A paper-patent match is established according to 3.3.2.
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Table B6: Descriptive Statistics: Person-Year Panel

𝒋(𝒊 , 𝒕) ∈ Nontop Firms Top Firms Academia

Mean SD Mean SD Mean SD

Experience (Years since Ph.D.) 11.678 8.569 9.209 7.322 11.587 9.052

Experience in Academia 1.171 3.236 0.675 2.222 9.771 8.173

Tenure 5.007 5.449 4.981 5.352 7.575 7.672

Current Position
Tenure-track 0.000 0.009 0.000 0.000 0.728 0.445

Postdoc 0.000 0.000 0.000 0.000 0.104 0.305

Research Scientist 0.119 0.324 0.149 0.356 0.036 0.186

Engineer 0.453 0.498 0.604 0.489 0.036 0.187

Manager 0.153 0.360 0.195 0.396 0.016 0.127

Senior Position 0.496 0.500 0.391 0.488 0.053 0.224

Any Promotion 0.062 0.242 0.064 0.245 0.060 0.238

Research Outputs
Any Paper 0.023 0.151 0.113 0.317 0.185 0.388

Any Paper-Patent Match 0.006 0.075 0.033 0.180 0.013 0.111

Any Patent App Not Matched to

a Paper

0.126 0.332 0.203 0.402 0.047 0.212

Movements between Employers
𝒋(𝒊 , 𝒕) vs. 𝒋(𝒊 , 𝒕 + 1)
New Employer Next Year 0.118 0.323 0.065 0.247 0.074 0.262

Employed by Top Firms Next Year 0.016 0.124 0.949 0.221 0.006 0.079

Observations 331,451 68,230 143,197

Notes: This table summarizes the person×year level panel for matched

Ph.D.’s. The first two columns display the means across person×year

observations for those currently employed by a firm outside the top tier

in the industry, denoted as 𝒋(𝒊 , 𝒕) ∈ non-top. The second set restricts to

those working at top firms, and the third set to those working in academia

(including postdocs, tenure-track jobs or other roles). We put all postdocs

and faculty in the third group. There are 530 person×year observations

(226 individuals) where a person works as a postdoc or visiting scholar in

one of the top firms.
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Table B7: Examples of CS Papers and Matched Patent Applications

Papers Matched Patent Applications

Firm Team

Over-

lap

Text

Distance

Title M/Yr Title Filing

M/Yr

Published

M/Yr

Microsoft 100% 0.247 FROID OPTIMIZATION OF

IMPERATIVE PROGRAMS IN

A RELATIONAL DATABASE

12/2017 METHOD FOR OPTIMIZA-

TION OF IMPERATIVE CODE

EXECUTING INSIDE A RELA-

TIONAL DATABASE ENGINE

05/2017 11/2018

Adobe 80% 0.273 FORECASTING HUMAN DY-

NAMICS FROM STATIC IM-

AGES

07/2017 FORECASTING MULTIPLE

POSES BASED ON A GRAPHI-

CAL IMAGE

04/2017 10/2018

Google 70% 0.146 VARIABLE RATE IMAGE

COMPRESSION WITH RE-

CURRENT NEURAL NET-

WORKS

05/2016 IMAGE COMPRESSION WITH

RECURRENT NEURAL NET-

WORKS

02/2016 01/2019

Yahoo 100% 0.233 UNBIASED ONLINE AC-

TIVE LEARNING IN DATA

STREAMS

08/2011 ONLINE ACTIVE LEARNING

IN USER-GENERATED CON-

TENT STREAMS

10/2011 05/2013

IBM 100% 0.121 A TAG BASED APPROACH

FOR THE DESIGN AND COM-

POSITION OF INFORMATION

PROCESSING APPLICATIONS

09/2008 FACETED, TAG-BASED AP-

PROACH FOR THE DESIGN

AND COMPOSITION OF

COMPONENTS AND APPLI-

CATIONS IN COMPONENT-

BASED SYSTEMS

10/2008 04/2010

Notes: This table presents examples of CS papers and matched patent applications. “Firm” refers to the common affiliation of

authors, which is matched to the assignee of the matched patent. “Team Overlap” is defined as the fraction of inventors on a

patent application who are matched with authors on the paper. Research assistants or interns may be authors on a paper but

excluded from inventors on a patent application. “Text distance” is measured by the distance between the embedded vector for

a paper’s title and abstract, and that of a patent’s. The word embedding was done via OpenAI’s Ada V2 model. The timestamp

“M/Yr” for a paper is the month/yr when it is published at a conference. “Filing M/Yr” for a patent application is based on the

earliest filing or priority date, and in “Published M/Yr” a patent application becomes public for the first time.
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C. Reduced-Form Tests for Employer Learning (Section 4)

Figure C1: Heterogeneity in Mobility Responses by Experience since PhD

(a) Any Move between Firms (b) Employment by Top Firms Next Year

Notes: We add interactions between 𝐷𝑖𝑡(10), 𝐷𝑖𝑡(11), Lagged-𝐷𝑖𝑡(10), Lagged-𝐷𝑖𝑡(11) and years of

experience since PhD to regression (4.1). The barplot above shows the estimated �̂�𝑘 on 𝐷𝑖𝑡(𝑘) and

�̂�𝑘 on Lagged-𝐷𝑖𝑡(𝑘) for 𝑘 = 11, 10, respectively at each experience level.
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Table C1: Job Mobility on Papers & Matched Patents (Poisson Regressions)

Move between Firms Move into Top Firms

(1) Nontop (2) Top (3) Academia (4) Nontop (5) Top (6) Academia

CS Papers at t : Dit(10) vs. 𝑫𝒊𝒕(11)

Paper only 0.2626 -0.0227 0.0992 0.5395 0.0034 0.3048

(0.0382) (0.0617) (0.0304) (0.0800) (0.0038) (0.0985)

Paper+Matched Patent 0.1495 0.0145 0.0128 0.3251 0.0021 0.3290

(0.0640) (0.0810) (0.1016) (0.1234) (0.0058) (0.2274)

CS Papers in [t − 3, t − 1]: Lagged-𝑫𝒊𝒕(10) vs. Lagged-𝑫𝒊𝒕(11)

Paper only 0.0083 0.0134 0.1153 0.1052 -0.0003 0.6870

(0.0274) (0.0463) (0.0270) (0.0550) (0.0030) (0.0957)

Paper+Matched Patent 0.1393 0.0910 0.0598 0.2593 0.0003 0.7869

(0.0426) (0.0661) (0.0714) (0.0915) (0.0050) (0.1818)

Patents unrelated to CS Papers

𝐷𝑖𝑡(01) -0.1114 -0.0712 -0.0990 -0.0175 0.0089 0.1389

(0.0189) (0.0415) (0.0500) (0.0473) (0.0027) (0.1120)

Lagged-𝐷𝑖𝑡(01) 0.0417 -0.0189 0.0749 0.1194 0.0035 0.0360

(0.0148) (0.0363) (0.0345) (0.0401) (0.0022) (0.1081)

Mean .1588418 .0656451 .1209954 .0469412 .9485002 .0304762

N 161K 66K 75K 86K 66K 27K

Pseudo 𝑅2
.1377074 .0382099 .1894513 .1777506 .0003756 .2066823

Notes: This table presents Poisson regressions of the mobility outcomes (indicators) on

the same controls and fixed effects as specified in (4.3). The coefficients on 𝐷𝑖𝑡(𝑘) or

Lagged-𝐷𝑖𝑡(𝑘) for 𝑘 = 11, 10 represent proportional increase in job mobility among workers

with output 𝑘 relative to coworkers group without an innovation output. Observations

that are separated by a fixed effect are dropped from the estimation sample of a Poisson

regression. For example, if the mean of the dependent variable is 0 at a firm-yr (𝑗 , 𝑡), all

observations within that (𝑗 , 𝑡) would be dropped in Poisson regression above but not in

OLS (Table 3).
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Table C2: Effects of Papers & Matched Patents on Job Mobility (Person Fixed Effect)

Move between Firms Move into Top Firms

(1) Nontop (2) Top (3) Academia (4) Nontop (5) Top (6) Academia

CS Papers at t : Dit(10) vs. 𝑫𝒊𝒕(11)

Paper only 0.0325 -0.0040 0.0065 0.0113 0.0055 0.0011

(0.0063) (0.0045) (0.0029) (0.0034) (0.0039) (0.0010)

Paper+Matched Patent 0.0309 0.0045 0.0025 0.0127 0.0026 0.0014

(0.0115) (0.0067) (0.0070) (0.0060) (0.0056) (0.0026)

CS Papers in [t − 3, t − 1]: Lagged-𝑫𝒊𝒕(10) vs. Lagged-𝑫𝒊𝒕(11)

Paper only 0.0066 -0.0022 0.0082 -0.0007 0.0012 0.0038

(0.0043) (0.0038) (0.0027) (0.0023) (0.0034) (0.0011)

Paper+Matched Patent 0.0306 0.0110 0.0048 0.0080 0.0041 0.0040

(0.0080) (0.0065) (0.0057) (0.0043) (0.0058) (0.0022)

Patents unrelated to CS Papers

𝐷𝑖𝑡(01) 0.0044 0.0089 -0.0007 0.0015 -0.0030 0.0017

(0.0025) (0.0031) (0.0043) (0.0011) (0.0028) (0.0015)

Lagged-𝐷𝑖𝑡(01) 0.0183 0.0140 0.0036 0.0033 -0.0100 -0.0020

(0.0024) (0.0030) (0.0033) (0.0011) (0.0027) (0.0010)

Mean .1105 .0624 .0683 .0167 .9521 .0058

N 222K 65K 121K 222K 65K 121K

Adj. 𝑅2
.1993 .0969 .1883 .1404 .0969 .1718

Notes: This table presents regression estimates of equation 4.1 with person fixed effects.

See the notes under Table 3 for details on other controls.
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Table C3: Additional Mobility Outcomes - Wage Growth and Academic Employment

Move to a Higher-Wage Firm Higher-Wage Position Move to Academia

(1) Nontop (2) Top (3) Nontop (4) Top (5) Nontop (6) Top (7) Academia

CS Papers at t : Dit(10) vs. 𝑫𝒊𝒕(11)

Paper only 0.0280 -0.0005 0.0313 0.0060 0.0139 0.0074 0.0185

(0.0056) (0.0035) (0.0078) (0.0039) (0.0026) (0.0019) (0.0019)

Paper+Matched Patent 0.0209 -0.0014 0.0115 0.0130 0.0056 0.0091 0.0122

(0.0093) (0.0056) (0.0117) (0.0076) (0.0041) (0.0031) (0.0057)

CS Papers in [t − 3, t − 1]: Lagged-𝑫𝒊𝒕(10) vs. Lagged-𝑫𝒊𝒕(11)

Paper only 0.0017 -0.0018 -0.0021 -0.0029 0.0051 0.0028 0.0107

(0.0032) (0.0024) (0.0041) (0.0024) (0.0013) (0.0012) (0.0018)

Paper+Matched Patent 0.0132 0.0072 0.0174 0.0014 0.0077 -0.0008 0.0179

(0.0059) (0.0044) (0.0080) (0.0046) (0.0027) (0.0020) (0.0038)

Mean .0594277 .039501 .0428258 .026157 .0099243 .0058593 .9498891

N 131K 59K 52K 45K 220K 66K 122K

Adjusted 𝑅2
.087463 .0185282 .0625471 .0178933 .0934459 .0076865 .0478011

Notes: This table presents estimates of 4.1 for changes in job titles as reported on LinkedIn. The first three columns show the

regression of any promotion on innovation outputs 𝐷𝑖𝑡(𝑘), Lagged-𝐷𝑖𝑡(𝑘) for 𝑘 = 11, 10, which is estimated on workers who are

not in senior roles yet (e.g., not a “senior software engineer”). In academia, a promotion is coded as assistant professors getting

tenured. Columns (4)-(9) are estimated for workers in the industry. (4)-(5) present the regressions of becoming a research scientist

on innovation outputs, estimated on employees who are not research scientists at nontop firms , and at top firms, respectively.

Likewise, becoming an engineer or manager is estimated on workers who are not an engineer or manager yet.
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Table C4: Additional Mobility Outcomes - Promotion | Stayers

Promotion New Scientist New Engineer New Manager

(1) Nontop (2) Top (3) Academia (4) Nontop (5) Top (6) Nontop (7) Top (8) Nontop (9) Top

CS Papers at t : Dit(10) vs. 𝑫𝒊𝒕(11)

Paper only 0.0413 0.0370 0.0470 0.0090 -0.0047 0.0058 -0.0035 0.0078 0.0082

(0.0065) (0.0056) (0.0031) (0.0050) (0.0032) (0.0034) (0.0026) (0.0029) (0.0028)

Paper+Matched Patent 0.0324 0.0120 0.0478 0.0194 0.0042 -0.0033 -0.0038 0.0136 0.0038

(0.0124) (0.0070) (0.0101) (0.0105) (0.0044) (0.0038) (0.0032) (0.0054) (0.0046)

CS Papers in [t − 3, t − 1]: Lagged-𝑫𝒊𝒕(10) vs. Lagged-𝑫𝒊𝒕(11)

Paper only 0.0081 0.0034 0.0119 0.0061 0.0026 -0.0052 -0.0007 -0.0017 -0.0021

(0.0035) (0.0034) (0.0025) (0.0032) (0.0034) (0.0019) (0.0022) (0.0016) (0.0019)

Paper+Matched Patent 0.0278 0.0077 0.0200 0.0120 -0.0038 0.0004 -0.0035 0.0013 0.0056

(0.0086) (0.0058) (0.0069) (0.0077) (0.0037) (0.0036) (0.0026) (0.0033) (0.0035)

N 87K 37K 65K 172K 53K 88K 24K 160K 49K

Adjusted 𝑅2
.040206 .0220636 .0461156 .1642801 .0366538 -.0251746 .0032157 .0111164 .0077875

Notes: This table presents the same set of regressions of promotions or position changes on innovation outputs as in Table C4,

but are estimated on stayers who are not moving to a new firm the next year.
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D. Estimation

D1. Details on Estimation

Disclaimer: I am revising this appendix as of 12/27/2024.

D2. Additional Estimation Results

Appendix Figure D: Change in Publication Rate in the Absence of Employer Learn-

ing
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Table D1: Model Parameters

Parameter Description Calibration Maximum-Likelihood Estimate

I. Common Prior

𝛿 Logit Coefficient on 𝑋(𝐼𝑖1) in (5.1) (−0.24, 0.009, 3.02,−2) on

phd rank and pub before

PhD

(−0.49,−0.98,−1.50,−2) on 𝐺𝑖1

II. Labor Supply - Preferences for Employers

𝑏 utility weight on log wage (2.7) 0.63

𝜌𝐺 1− corr. of 𝜖𝑖𝑡 𝑗 for 𝑗 ∈ nest 𝐺 𝜌1 = 1 for postdoc (0.78, 0.45, 0.88) at 𝐺 ≠ 1

(𝜂1,𝐺 , 𝜂2,𝐺) preference for market 𝐺: (0.5, 1) at 𝐺 = 1 (0.48, 0.49) at 𝐺 = 3

𝜂1,𝐺𝜋 + 𝜂2,𝐺𝜋2 (0, 0) at 𝐺 = 2 (−0.24,−0.49) at 𝐺 = 4

(𝜆0,𝐺 ,𝜆1,𝐺) prob. of workers re-entering the la-

bor market (2.6)

(0.40,−0.50) at 𝐺 = 1 (0.04,−0.5) at 𝐺 = 0

𝜆𝐺(𝜋) = 𝜆0,𝐺×(1+𝜆1,𝐺×𝜋), at 𝑡 > 1 (0.08, 0.10) at 𝐺 = 2, (0.13, 0.99)
at 𝐺 = 3

(Λ𝐴𝐽 ,Λ𝐽𝐴) prob. academia is open to workers

from industry, and vice versa.

(0.24, 0.32)

III. Firm Productivity

𝜙 𝑗 Baseline productivity in routine

tasks of 16 employers

�̄�1 , �̄�2 , �̄�3 , �̄�5 , �̄�11 Table D2

𝜙 𝑗(10) 𝑗’s proportional return to paper Table D2

𝜙 𝑗(01) 𝑗’s proportional return to patent 𝑗-fixed effect in patenting Table D2

𝜙 𝑗(11) 𝑗’s proportional return to paper-

patent

𝜙 𝑗(11) = 1.25 × 𝜙 𝑗(10) +
0.25 × 𝜙 𝑗(01)

𝜁 cost of innovation: 𝑐(𝜋, 𝜏) = 𝜁
2
𝜏2

0.30

IV. Worker Productivity

𝑝𝐻 , 𝑝𝐿 prob. of a 𝐻-ability producing a

paper (𝑦 = 1)

(0.81, 0.19)

�̃�𝐻 , �̃�𝐿 prob. of a 𝐿-ability producing a pa-

per (𝑦 = 1)

(0.42, 0.18)

𝑞𝐻 , 𝑞𝐿 prob. of a 𝐻-ability producing a

paper with a matched patent (�̃� = 1)

(0.69, 0.51)

Others

𝛽 exponential discount factor 0.90

Notes: The 16 employers (Table D2) belongs to four nests: Tenure Track (𝐺 = 0), Postdoc (𝐺 = 1), Top Firms

in Industry (𝐺 = 2), and Nontop Firms in Industry (𝐺 = 3). There are 56 parameters that are estimated by

maximizing the joint likelihood of job movements and innovation outputs (5.2), using the limited-memory

BFGS optimization algorithm (?). See Section 5.1 for estimation details. Additional assumptions are fully

specified in Appendix D.
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Table D2: Firm Level: Estimated Productivity, Size and Wage Returns

Returns to Innovation

𝑗 Description Baseline 𝜙 𝑗 Paper 𝜙 𝑗(10) Patent 𝜙 𝑗(01)

Nest 0. Academia - Tenure Track

0 Nontop Schools 0.298 0.485 0.080

1 Top 25 CS 0.011 0.800 0.092

Nest 1. Academia - Postdoc

2 Postdoc at Nontop Schools 0.015 0.412 0.097

3 Postdoc at Top 25 CS 0.008 0.476 0.096

Nest 2. Industry - Top Firms

4 IBM 0.005 0.490 0.533

5 Microsoft 0.022 0.365 0.257

6 Amazon 0.019 0.182 0.223

7 Facebook (Meta) 0.021 0.255 0.193

8 Apple 0.018 0.087 0.283

9 Google (Alphabet) 0.060 0.253 0.197

Nest 3. Industry - Nontop Firms (Grouped by Patenting FE)

10 Above 90th Percentile 0.087 0.293 0.425

11 80th-90th 0.214 0.273 0.220

12 70th-80th 0.088 0.236 0.121

13 50th-70th 0.171 0.224 0.082

14 25th-50th 0.157 0.263 0.046

15 <25th Percentile 0.122 0.228 0.001

Notes: I classify the 7,000 unique employers into 16 groups (indexed by 𝑗), which belong to four

nests (𝐺). This table displays the maximum-likelihood estimates of the baseline productivity, 𝜙 𝑗 ,

and their returns to CS papers, 𝜙 𝑗(10). The productivity in patenting, 𝜙 𝑗(01), is calibrated based

on the estimated 𝑗 fixed effect in a regression of patent application on firm fixed effects, condi-

tional on worker characteristics. I further calibrate the return to a paper with a matched patent

as 𝜙 𝑗(11) = 1.25 × 𝜙 𝑗(10) + 0.25 × 𝜙 𝑗(01).. In academia (𝐺 ∈ {0, 1}), “Top CS” includes the top

25 CS departments ranked by CSRankings: CMU, Berkeley, Stanford, MIT, Georgia Tech, Cornell,

USC, UIUC, Princeton, Washington State, UCLA, UCSD, UMass - Amherst, UMich, Purdue, Mary-

land, Northeastern, Madison, Columbia, UT-Austin, UPenn, NYU, UC-Irvine, UC-Santa Barbara,

UChicago, Stony Brook. Nontop firms in the industry are sorted by the regression estimate for 𝑗
fixed effect in patenting, conditional on worker characteristics and time trend.
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Table D3: Descriptive Statistics: Person-Year Panel

𝒋(𝒊 , 𝒕) ∈ Nontop Firms Top Firms Academia

Mean SD Mean SD Mean SD

Experience (Years since Ph.D.) 3.020 1.410 3.157 1.401 2.853 1.419

Experience in Academia 0.295 0.820 0.195 0.648 2.703 1.402

Tenure 2.020 1.495 2.203 1.533 1.898 1.432

Current Position
Tenure-track 0.000 0.014 0.000 0.000 0.528 0.499

Postdoc 0.000 0.000 0.000 0.000 0.295 0.456

Research Scientist 0.170 0.376 0.167 0.373 0.047 0.212

Engineer 0.567 0.495 0.665 0.472 0.040 0.196

Manager 0.120 0.325 0.129 0.335 0.010 0.101

Senior Position 0.461 0.498 0.341 0.474 0.039 0.192

Any Promotion 0.097 0.296 0.089 0.284 0.057 0.231

Research Outputs
Any Paper 0.042 0.200 0.128 0.334 0.206 0.404

Any Paper-Patent Match 0.011 0.104 0.041 0.198 0.013 0.115

Any Patent App Not Matched to

a Paper

0.162 0.368 0.220 0.414 0.054 0.226

Movements between Employers
𝒋(𝒊 , 𝒕) vs. 𝒋(𝒊 , 𝒕 + 1)
New Employer Next Year 0.156 0.363 0.080 0.271 0.165 0.371

Employed by Top Firms Next Year 0.030 0.171 0.942 0.233 0.017 0.130

Observations 53,839 16,081 24,380

Notes: This table summarizes the 5-yr balanced estimation sample at

person×year level. We restrict to 18,860 workers who graduated between

2005 and 2018 and have full-time non-missing employment history for the

first five years post PhD. See the notes under Table B5 and Table B6 for

additional details on the variables.
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